

UNIVERSIDAD NACIONAL AUTÓNOMA <u>DE MÉXICO</u>

UNIDAD MULTIDICIPLINARIA DE DOCENCIA E INVESTIGACIÓN

FACULTAD DE CIENCIAS

Cambios de cobertura y uso de suelo en la planeación territorial del municipio de Los Cabos B.C.S.

T E S I S

QUE PARA OBTENER EL TÍTULO DE: LIC. EN MANEJO SUSTENTABLE DE ZONAS COSTERAS

P R E S E N T A:

OSCAR MORALES MEJÍA

Director de TesisMAIA EDUARDO RAMIREZ CHÁVEZ

Contenido

RESUMEN	6
1. Introducción	7
2 Antecedentes	10
2.1 Dinámica espacial y poblacional del municipio de Los cabos 1970-2010	10
2.2 Los polos de desarrollo turístico y sus principales implicaciones	13
2.3 Panorama histórico de los instrumentos de planeación territorial	15
3. Justificación	17
3.1 Área de estudio	19
3.2 Objetivo general	20
3.3 Objetivos Particulares	20
4 Marco teórico	21
4.1 El paisaje y su relación con el cambio de cobertura vegetal y uso de suelo	21
4.2 Implicaciones ambientales del cambio de cobertura vegetal y uso de suelo	23
4.3 Las escalas espaciales y temporales dentro del análisis de cambios de cobert	uras y
usos de suelo	26
4.4 El enfoque geográfico en la gestión ambiental	28
4.5 La transversalidad en la política ambiental	30
5 Metodología	32
5.1 Detección e interpretación cartográfica y digital del cambio	32
5.1.1 Identificación de instrumentos de planeación territorial	32
5.1.2 Determinación de coberturas vegetales y usos de suelo	34
	34
5.1.3 Identificación de redes causales y problemáticas ambientales subyacentes	s al
cambio de coberturas y usos de suelo	37

	37
5.2.1 Clasificación supervisada de las imágenes satelitales	39
5.2.2 Obtención de mapas temáticos	41
5.2.3 Análisis de los patrones de cambio de cobertura y uso del suelo	42
	42
5.3 Análisis de las causas del cambio de uso del suelo	46
6 Resultados	47
6.1 Detección e interpretación cartográfica digital del cambio y análisis espacial de	
jurisprudencias	47
6.2 Análisis de los patrones de cambio de cobertura y uso del suelo	60
6.3 Análisis de las causas del cambio de uso del suelo	74
7 Discusiones	82
7.1 Detección e interpretación cartográfica digital del cambio	82
7.2 Análisis espacial de jurisprudencias	83
7.3 Análisis de los patrones de cambio de cobertura y uso del suelo	86
7.4 Análisis de las causas del cambio de uso del suelo	89
8 Conclusiones	93
9 LITERATURA CITADA	96
ANEXOS	101

IDNDICE DE FIGURAS

Figura 1 Dinámica de población del año 1950 al 2010 del municipio de Los Cabos B.C.S
FUENTE: INEGI 2015
Figura 2: Macro localización del municipio de Los Cabos B.C.S
Figura 3: procesos de digitalización por medio de SIG del Programa de Ordenamiento Ecológico
Local del Municipio de Los Cabos
Figura 4: Diagrama técnico de general para el análisis de cambios de coberturas y usos de suelo.
Tomado de (bocco, 2005)
Figura 5: Mosaico de Imágenes Landsat 7 TM para el año de 1995 de 30m de resolución espacial
Figura 6: Diagrama de situación de redes causales (tomado de Ortiz-Lozano, 2000)
Figura 7: Modelo de procesos de cambio de coberturas y usos de suelo del LCM IDRISI42
Figura 8: Caracterización final de la coberturas vegetales y usos de suelo por año utilizadas en el
LCM
Figura 9: Ecuación para el cálculo de tasa de cambio
Figura 10: Urbanización en 1995 e Instrumentos de planeación territorial dentro del corredor CSL-
SJC
Figura 11: Accesibilidad a playas dentro del corredor turístico CSL-SJC
Figura 12: Dinámica de Cambio territorial del año 1995 a 2013
Figura 13: Ganancias y pérdidas de coberturas y usos de suelo experimentadas del año 1995 al
2013
Figura 14: Transformación neta por cobertura y uso de suelo
Figura 15: Cobertura del matorral sarcocaule transformada de 1995-2013 67
Figura 16: Transformación del matorral xerófilo Sarcocaule
Figura 17: Transformación de coberturas vegetales y usos de suelo de 1995 a2013 debido a la
acción antropogénica71
Figura 18- Transformación de las coberturas vegetales del corredor CSL-SJC debido a actividades
antropogénicas73
Figura 19: Red causal de las principales problemáticas ambientales

Figura 20: Tendencia de cambio de coberturas vegetales a zonas urbanas	l
Tabla 1: Coberturas vegetales y uso de suelo seleccionadas para el presente estudio	3
Tabla 2: Fecha de captura de las imágenes satelitales utilizadas)
Tabla 3: Lista de instrumentos de planeación territorial vigentes en el área de estudio 48	3
Tabla 4 Organización territorial municipal por unidad ambiental de gestión (UGA), de acuerdo al	
Programa de Ordenamiento Ecológico)
Tabla 5: Congruencias e incongruencias entre instrumentos de planeación territorial y ANP 59)
Tabla 6: Principales impactos ambientales y su nivel de amenaza por tipo de cobertura	5
Tabla 7: Actores principales involucrados en la toma de decisiones entorno a el cambio de	
coberturas y usos de suelo	3

RESUMEN

El contexto de crecimiento poblacional-urbano y sus posibles impactos socioambientales de las últimas décadas en el municipio de Los Cabos en conjunto con el de la planeación territorial y ambiental, hacen que sea esencial comprender la expresión espacial del cambio de cobertura y usos de suelo al igual que de las causas detrás de estos.

Con la ayuda de los sistemas de información geográfica (SIG) se caracterizó las especies vegetales coberturas y usos de suelo que sirvieron como leyenda base para los años de 1995 y 2013. Con esta información se eléboro el análisis espacial que caracterizó la dinámica espacial del territorio, las capas resultantes se sobrepusieron sobre los distintos instrumentos de planeación territorial (PDU) y ambiental (ANP, POEL-MLC) vigentes, con la intención de observar las respuesta de los cambios ante las políticas de cada instrumento. Por medio del análisis de redes causales se identificaron los problemas ambientales derivados del cambio de coberturas y usos de suelo, así como al conjunto de actores que intervienen en dichos procesos.

En conclusión, el excesivo número de instrumentos de planeación territorial vigentes han originado una falta de coordinación, ejecución y actualización de los mismos en especial del programa de desarrollo urbano y el programa de ordenamiento ecológico, de forma tal que han sido incapaces de guiar y mitigar los problemas socio-ambientales derivados del explosivo crecimiento urbano .

1. Introducción

La transformación de los patrones y atributos espaciales de los sistemas naturales con el fin de garantizar y satisfacer las necesidades de su población es algo inherente de la especie humana (Bocco, 2007, Melanie 2013), al igual que la construcción de métodos y mecanismos de apropiación ligados intrínsecamente a fuerzas socioeconómicas y políticas (Sarukhán et al 2009, Gonzales, 2010).

No obstante, la relación actual ambiente-economía-desarrollo ha traído consigo diversas repercusiones negativas en el funcionamiento y estructura de los ecosistemas entre las que destacan los Cambios de Cobertura y Usos de Suelo (CCUS) (Lambin, 1997, Rosete, et al., 2009, Bocco, 2007, Turner y Meyer 1994 Lambien y Geist, 2006). Este problema ambiental no solo implica la perdida de cobertura vegetal o deforestación, sino que también contribuyen a otros impactos ecológicos como desertificación y degradación del suelo, fragmentación de ecosistemas, alteración del ciclo hidrológico y de carbono, pérdida de biodiversidad, alteraciones en el microclima, etc. (Rosete et al., 2007, Reyes et al., 2006, Sahagún, 2011, Lambin et al, 2003).

Globalmente las tasas de cambios de cobertura y uso del suelo ascienden a 13 millones de ha/año que actualmente significan la pérdida del 20% de los humedales costeros y el 3% de bosques y selvas, situación que ha llevado a este proceso a la escena académica, gubernamental y social (FAO, 2010, Troitiño, 2008, Velázquez et al., 2002, Agardy *et al.*, 2005). Lamentablemente México a nivel mundial posee una de las más altas tasas de cambio, las cual representan un transformación anual desde

1980 del 0.43% de su territorio tornando susceptibles a la desertificación a el 30% de sus zonas áridas y semiáridas, reduciéndose año con año el 0.89% de las comunidades de matorral xerófilo (FAO, 2000, SEMARNAT 2003).

Una de las actividades que en épocas recientes ha contribuido en mayor medida como factor de cambio es el turismo, la cual gracias a la revalorización a nivel mundial de los recursos bióticos-marinos y del paisaje como atractivo turístico y las condiciones económicas y de desarrollo predominantes en el país, desencadenarían en la década de 1970 una política de intervención entorno al desarrollo del turismo, a fin de diseñar, proyectar y desarrollar centros de captación del turismo sustentados en los recursos naturales. (Cervantes, 2007, FONATUR, 2005). A partir de entonces la actividad turística de sol y playa se tornaría en el mercado ideal para la inversión, dado que los satisfactores generados requieren una mínima inversión en la producción y provén una alta rentabilidad convirtiéndola en una importante actividad generadora de empleo y divisas, situación que significaría un ritmo de crecimiento anual de las comunidades costeras asociadas a este tipo de desarrollos¹ superior a la media nacional² (Jiménez, 1998, INEGI, 2007, INE, 2005).

Uno de los más claros ejemplos del cambio de uso de suelo por este tipo de desarrollos es la Región de Los Cabos B.C.S., cuya posición geográfica semi-aislada del resto del continente, le permiten contar con una serie de ambientes casi únicos de alto valor ecológico, que albergan una gran variedad de especies de flora y fauna endémicas (Arriaga y Ortega 1988; Arriaga y Rodríguez-Estrella 1997). En esta región

_

¹ Cancún, Cozumel, Los Cabos, Bahía de banderas Nayarit

² 3.1% en 1970 a 1.2% en 2010

el impulso al turismo ha detonado en tan solo tres décadas un crecimiento poblacional con tasa promedio del 10% anual (CONAPO, 2005), que se tradujeron en problemas como; creación de asentamientos humanos indebidos ecológico, falta de servicios e infraestructura, perdida de paisaje y espacios públicos (especialmente las playas) e identidad cultural, marginación y exclusión, dependencia del desarrollo del turismo, así como la perdida y transformación de la cobertura vegetal, en especial el matorral xerófilo y la duna costera (Cervantes, 2007; Arriaga, 2009, Rosete et al., 2007).

Lamentablemente a pesar de contar con una serie de instrumentos en materia de planificación territorial dedicados al ordenamiento de su territorio desde su concepción (Plan Maestro CIP, OET, PDU, ANP), estos últimos no han sido capaces de contener y mitigar el crecimiento urbano desordenado, inclusive tomando en cuenta que hoy en día la disponibilidad de insumos de percepción remota y del avancé de los mecanismos para sus análisis (Sistemas de Información Geográfica SIG), han permitido desarrollar una serie de metodologías que permiten simular, evaluar y diagnosticar de manera rápida y confiable los procesos de cambio (Velázquez, 2005).

El presente estudio caracteriza y analiza el cambio de cobertura y uso de suelo, así como los problemas ambientales derivados de la redistribución espacial en el municipio de Los Cabos de 1995-2013, además evalúa la respuesta de los patrones de cambio ante las políticas territoriales identificando las causas detrás de dichos patrones.

2 Antecedentes

2.1 Dinámica espacial y poblacional del municipio de Los cabos 1970-2010

Con las condiciones socioeconómicas que el país enfrentaba en la década de 1970, el estado mexicano decide tomar el control en el desarrollo de aspectos claves de la economía por medio de la implementación de la "teoría de Polos de Desarrollo". Esta teoría tenía como fin principal el acelerar los procesos económicos de ciertas regiones rezagadas, por medio de fuertes inversiones para que en el corto y mediano plazo se generaran divisas y empleo a través del fomento al turismo (Balarezo, 1990, Garcia 1979).

Con la adopción de este teoría, en 1974 se da el fideicomiso de 1,200 has, para crear el Centro Integralmente Planeado San José del Cabo-Cabo San Lucas, basado en un "Plan Maestro" donde el desarrollo de la infraestructura y servicios coexistirían de manera ordenada y planificada con el fin de que estos coadyuvaran e impulsaran a esta región (FONATUR, 1982).

Hasta esta fecha, la población total del de Baja California Sur y de la entonces delegación de San José se mantenía como una de las regiones más despobladas a nivel nacional con tan solo 15,325 habitantes (INEGI, 2015), sin embargo con la promoción del modelo de desarrollo turístico y las oportunidades económicas impulsadas por el gobierno a partir de la puesta en marcha del proyecto, la región comenzaría experimentar un importante crecimiento de su población (figura 1) (SECTUR, 2014).

De la década de 1980 a 1990 el crecimiento anual promedio se elevaría al 6.8%, con un crecimiento total de la población del 68% pasando de 25,849 a 43,920 habitantes, a partir de 1990 el crecimiento anual de la población comenzaría a adquirir un comportamiento exponencial, destacándose muy por encima de la media nacional llegando alcanzar una tasa anual del 14%, que para el año 2000 representaban 105,469 habitantes, para el año 2005 la tasa promedio fue de 9.25%, para el año 2010 el municipio ya contaba con 238,487 habitantes, en los últimos cinco años 2010-2015 la tasa de crecimiento fue de 7.6% para un total de 305, 980 habitantes (INEGI, 2015).

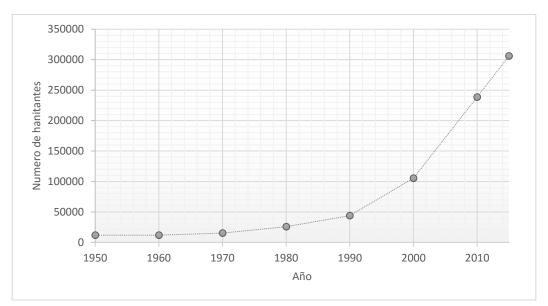


FIGURA 1 .- DINÁMICA DE POBLACIÓN DEL AÑO 1950 AL 2010 DEL MUNICIPIO DE LOS CABOS B.C.S FUENTE: INEGI 2015

Pese a la situación económica que el país enfrentaba, en la década de 1990 en el municipio se da una reconversión de las actividades económicas hacia el sector terciario basadas esencialmente en el turismo, esta situación convertiría a la región en

un importante polo de atracción de migrantes que modificaría la tasa de crecimiento en un serio problema para las autoridades locales (SECTUR, 2014, Mendoza, 2014). El ritmo de crecimiento poblacional evidentemente se ve reflejado en el crecimiento de los asentamiento humanos, en 1983 el área urbana de San José de Cabo tan solo abarcaba 7.77 km², mientras que para el año 2010 alcanzó los 38.2 km² (Mendoza, 2014).

Actualmente de la población total municipal más del 92% se concentra dentro de los 33 km de franja costera que componen el corredor turístico y las ocho localidades que integran las ciudades de Cabo San Lucas y San José del Cabo (IMPLAN, 2008, INEGI 2005). En conjunto estas localidades representan el 99% del crecimiento municipal del año 2000 al 2005 (Arizpe, 2012).

Dentro de esta planicie costera existen tres principales procesos antrópicos; 1) Desmatorralización (transformación de vegetación nativa para actividades agropecuarias) 2); Recuperación (de usos agropecuarios a vegetación nativa) y 3) Expansión de las manchas urbanas (Rosete et. al 2008). De estos procesos, la expansión de la mancha urbana se ha convertido en el más relevante ya que debido a su intensidad se ha expresado de forma desordenada y anárquica, focalizando los procesos de desmonte en los lomeríos bajos, planicies, playas cercanas a las principales vías de comunicación, y zonas agrícolas contiguas a las ciudades de Cabo San Lucas y San José del Cabo, degradando principalmente la cobertura del matorral xerófilo (sarcocaule, crasicaule) con una tasa de pérdida anual de 2059 ha de 1993 a 2001 (Arriaga, 2009, Mendoza, 2014).

Si bien se reportan algunos procesos de recuperación, especialmente en la zona de la sierra de la Laguna, esta no es comparable con la disminución del matorral xerófilo que representa el 77% de la superficie transformada principalmente asociada al proceso de urbanización en el corredor turístico Cabo San Lucas-San José del Cabo cuya magnitud de crecimiento en 22 años equivale al 270% (Rosete et. al 2008). Tomando en cuenta las estimaciones del crecimiento poblacional más reservadas, estas indican que para el año 2030 la población total de Los Cabos ascenderá a 464 mil habitantes de los cuales el 90% es decir 422 mil se asentaran dentro del CIP de FONATUR (CONAPO, 2014, INEGI, 2015, IMPLAN, 2012), situación que represente una importante amenaza a la estabilidad ambiental de la región.

2.2 Los polos de desarrollo turístico y sus principales implicaciones

Socialmente el modelo de desarrollo ha tenido efectos opuestos y contraproducentes con la supuesta "Integralidad y funcionalidad territorial" de este tipo de desarrollos, ya que debido a la captación laboral especializada requerida, estos centros se han convertido en enclaves turísticos³ donde; la gente local no encaja en el esquema de

³ Ciudad dual de relaciones Norte-Sur, dividida por la franja de playa modificada por hoteles y los condominios residenciales y, por el traspatio turístico compuesto por los desarrollos residenciales y la ciudad intensamente transformada y restos de antiguas actividades económicas, que progresivamente son desplazadas por el comercio y los servicios vinculados al turismo. Así, más allá de las dorsales urbanas y los continuos edificados de los *resorts* o centros turísticos, ocultadas tras estas *ciudades de la fantasía*, se desarrollan extensas manchas urbanas, algunas de las cuales son auténticas *ciudades de la miseria*

desarrollo, siendo excluida y marginador tanto social, económica y desde luego territorialmente (Bringas, 1999).

De igual forma, el incremento en la presión sobre los empleos, los servicios públicos y privados y de vivienda han modificado factores psicológicos de la población local receptora, especialmente aquellos relacionados con la pérdida de identidad cultural, ya que la población migrante poseen otro tipo de valores y costumbres más adaptadas al modelo globalizado, en donde se privilegia el aspecto económico sobre los socio-ambientales, perdiéndose la identidad cultural de la región (Mendoza, 2014, Arizpe, 2012). Además la creciente dependencia de las localidades al desarrollo del turismo que altera la estructura laboral y los papeles de la comunidad (Cervantes, 2007)

Por si fuera poco, existe una fuerte tendencia hacia privilegiar intereses privados en detrimento de la población en general, principalmente si se habla de la línea de costa (playas y dunas), alentado y consintiendo la privatización de gran parte de las mismas, reduciendo aún más los casi inexistentes espacio de convivencia, tanto para la población local como para el turismo mismo (IMPLAN, 2012).

Si bien es cierto que algunos de los actores vinculados al sector turístico nacional buscan actualmente, incorporar a sus prácticas, políticas de desarrollo sustentable, que fomenten una nueva estrategia de promoción del turismo sustentable, el modelo turístico convencional mexicano, resulta ser esencialmente contradictorio con la sustentabilidad, ya que su generación se define a partir de un concepto en donde se beneficie del turismo masivo, y de la postura económica que implica la generación máxima y rápida de rentabilidad de la inversión; así como de la fuerte generación de

impactos negativos sobre la sociedad y el medio ambiente (Cervantes, 2007, López y Palomino, 2001).

2.3 Panorama histórico de los instrumentos de planeación territorial

En México el deterioro paulatino de los recursos naturales y de la capacidad productiva de los ecosistemas, han dado pie a la necesidad de planificar los procesos de ocupación del territorio, por medio de un conjunto de acción encaminadas modelar los usos del suelo sobre una base de conocimientos y análisis científicos y jurídicos, y con el apoyo de técnicas como la estadística, la cartografía y los sistemas de información geográfica (Bocco, 2004, Kostrowichi, 1986, Agarwal et al. 2001, Etter, 2011).

A partir de 1988 dentro de la Ley General de Equilibrio Ecológico y Protección al Ambiente (LGEEPA), se establece al *Ordenamiento Ecológico Territorial* como un "Instrumento de política ambiental cuyo objeto es regular o inducir el uso del suelo y las actividades productivas, con el fin de lograr la protección del medio ambiente y la preservación y el aprovechamiento sustentable de los recursos naturales, a partir del análisis de las tendencias de deterioro y las potencialidades de aprovechamiento de los mismos", haciéndose obligatoria su la regulación a nivel local.

Pese a su obligatoriedad los programas creados en la década de 1990 carecen de metodologías confiables, formato al cual adherirse y de las herramientas necesarias para establecer convenios y guiar el proceso de coordinación entre las instancias participantes, hasta el año 2006 con el surgimiento de su reglamento (Azuela, 2006). Adicionalmente, el proceso de planeación quedo dividido a través de dos

dependencias gubernamentales, las "Direcciones Municipales de Asentamientos Humanos" en el caso de los desarrollos urbanos y los "Institutos Municipales de Planeación" (IMPLAN) en de los Programas de Ordenamiento Ecológico Locales (Azuela, 2006).

No obstante su supuesta complementariedad para lograr un desarrollo territorial equilibrado, en la práctica estos presentan marcadas diferencias sustantivas en cuanto a objetivos, yuxtaposiciones y ambigüedades normativas en situaciones jurídicas y procesuales, situación que ha generado varias zonificaciones dentro de un mismo territorio, las cuales en la mayoría de los casos proponen estrategias que carecen de concordancia, llevando a autorizar desarrollos urbanos en sitios ambientalmente no aptos para ese fin (Domínguez, 2010 Azuela, 2006).

Uno de los más claros ejemplos de la falta de reglas claras, fue la creación de instrumentos a nivel nacional con diversos enfoques, entre ellos el Programa de Ordenamiento Ecológico-Municipio de Los Cabos (POEL-MLC, cuyo estudio técnico desarrollado dentro del proyecto de ordenamiento ecológico de regiones con actividades productivas prioritarias en 1992, tuvo como resultado un instrumento de planeación ambiental creado para evaluar y programar el uso del suelo enfocado en el desarrollo urbano y turístico de la región (SEDESOL-INE, 1995).

Pese a contar con un enfoque para el desarrollo urbano-turístico, para la fecha de su decreto (1995) el crecimiento urbano ya había rebasado algunas de las políticas de planeación, además las fuentes de información y datos utilizadas para su elaboración eran en anteriores a 1990 por lo que la mayoría de estos datos carecían de apego a la realidad del momento del municipio (Arizpe, 2012). Teniendo como consecuencia

serias alteraciones al medio ambiente, modificaciones a las características paisajísticas del municipio, así como la debilitación de la capacidad de operación del POEL-MLC como instrumento de la política (SEDESOL-INE, 1995, Arizpe, 2012, IMPLAN, 2008).

Desde varios sectores de la población, académica y del gobierno municipal se ha puesto en evidencia la necesidad de insertar una visión con enfoque territorial integral en los esquemas de planeación regional turística y se han generado acciones de gobierno con enfoques y procedimientos que tienden hacia un desarrollo sustentable, como lo fue el estudio técnico para para la actualización del Programa de ordenamiento ecológico municipal del año 2008, sin embargo la falta de acciones políticas y sociales concretas entre los distintos actores involucrados ha imposibilitado que dicho estudio hasta hoy en día sea decretado, permaneciendo en el olvido (Arizpe, 2012, Carruthers, 2012, Cervantes, 2007).

3. Justificación

A nivel mundial se reconoce que los cambios de cobertura y uso del suelo representan una de las mayores amenazas a la biodiversidad, ya que estos no solo implican la pérdida de la cobertura vegetal original de un área, sino también la fragmentación de los ecosistemas, disminución en su capacidad productiva y servicios ambientales que prestan (Arriaga 2009, Rosete 2007, Bocco *et al.*, 2001).

El municipio de Los Cabos, Baja California Sur, en los últimos años ha experimentado un importante proceso de urbanización y de crecimiento exponencial de la población como resultado del modelo turístico costero mexicano y su centro integralmente planeado para el turismo operado por FONATUR. A pesar de contar con una serie instrumentos destinados a regular dicha problemática, la falta de actualización y de estudios detallados que permitan estimar la expresión espacial del cambio de coberturas y usos de suelo, ha dejado carentes de vigencia a dichos instrumentos, acelerando con ello los procesos de transformación del medio.

Dada la importancia de la preservación de la características paisajistas para el éxito de este tipo de proyectos, el contar con información actualizada del estado de los recursos naturales, así como de las fuerzas motrices detrás los principales factores de cambio y las problemáticas ambientales que de estos se derivan es de suma importancia. Este estudio describe las transformaciones de las coberturas vegetales y usos de suelo y las redes causales detrás de ellos, y evalúa la eficacia de los instrumentos de gestión territorial, por medio de mapas temáticos, esperando que dicha información sea aplicada para la formulación y seguimiento de políticas ambientales e iniciativas efectivas para el manejo sustentable del territorio.

3.1 Área de estudio

El municipio de Los Cabos se ubica en la península de Baja California colinda al norte con el municipio de La Paz y el Golfo de California, al sur con el Océano Pacífico, al oeste con el municipio de La Paz y el Océano Pacífico y al este con el Golfo de California y el Océano Pacífico. Se ubica geográficamente entre los 23°40' y 22°52' de latitud norte, y 109°24' y 110°07' de longitud oeste. (INEGI, 2001); tiene una extensión de 3,754.3 km2. Que representa el 5% de la superficie del estado (INEGI, 2000).

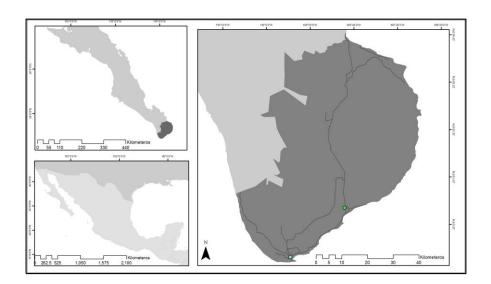


Figura 2: Macro localización del municipio de Los Cabos B.C.S

3.2 Objetivo general

Analizar la efectividad de la política ambiental en el municipio de Los Cabos, por medio de la caracterización los cambios de cobertura y uso de suelo que se han presentado del año 1995 a 2013

3.3 Objetivos Particulares

- Identificar las debilidades normativas y de control de los instrumentos de gestión del territorio vigentes en el municipio
- Caracterizar las los patrones de cambio de cobertura vegetal y usos de suelo
- Identificar las Unidades de Gestión Ambientales que presentan mayor grado de transformación
- Establecer las relaciones causales entre las problemáticas ambientales derivas del cambio de cobertura vegetal y uso de suelo del en función de las principales actividades que han propiciado los cambios

4 Marco teórico

4.1 El paisaje y su relación con el cambio de cobertura vegetal y uso de suelo

De manera sencilla, se puede definir a la estructura de los paisajes como el conjunto de relaciones espaciales entre los distintos elementos del mismo, y en específico a la distribución de los flujos de energía, materiales y especies en relación con o tamaños, formas, números clases y configuraciones de los ecosistemas o en una concepción más amplia al uso u ocupaciones del suelo (Forman y Gordon, 1986).

Desde esta visión, el paisaje como ente dinámico se presenta como un conjunto de mosaicos constituidos de distintas clases de coberturas en continua interacción y metamorfosis, donde los procesos ecológicos ocurren en distintas escalas de tiempo y espacio (Sklar y Costanza, 1991). Esta constante reconstrucción del espacio que varía a través de tiempo, se encuentra supeditada por procesos naturales como son las fluctuaciones demográficas propias de las poblaciones que lo constituyen, características del relieve, propiedades del suelo, estructura de la vegetación y su estado sucesional (Flamenco, 2007), fenómenos meteorológicos como huracanes, incendios, sequias, etc (Lindenmayer y Franklin 1997), además de fenómenos sociales, que modifican la probabilidad de que cada una de las coberturas del mosaico pueden adquirir múltiples trayectorias de cambio (O´Brien, 1995, Rosette, 2008, Fernández et al., 1992).

A diferencia de los procesos naturales, los cambios inducidos por el hombre en su búsqueda por producir bienes y servicios alteran la estructura y función del mosaico paisajístico, de ahí que se considere que las actividades humanas son las principales fuerzas que transforman actualmente el paisaje (Forman, 1995, Rosette, 2008, Turner y Meyer 1994). De acuerdo con Lambin (1997), la mayor parte de los cambios ocurridos en ecosistemas terrestres se deben a: 1) conversión de la cobertura natural del terreno, 2) degradación del terreno, y 3) intensificación en el uso del terreno. En el año 2003 Lambin et al., determinaron que los principales conductores del cambio son la agricultura, la ganadería, la extracción forestal y la construcción de centros urbanos, sin embargo es claro que la influencia de estos conductores del cambio difieren en intensidad e impactos para la estructura espacial de paisaje en cada territorio.

Sea cual sea el conductor del cambio, la dirección e intensidad del proceso de transformación están determinadas por la combinación de factores socioeconómicos, institucionales, biofísicos y ambientales (Velázquez et al 2002), de forma tal que los cambios que afectan a un paisaje poseen un patrón determinado por la estructura del paisaje, las perturbaciones naturales dependen de la estructura del paisaje para su dispersión (Turner 2005), mientras que los cambios generados por el ser humano suelen ocurrir primero y de forma más intensan en las zonas más accesibles y con mayor potencial para el desarrollo de actividades productivas (Lindenmayer y Fischer, 2006). Finalmente las transformaciones al poseer diferentes procedencias se sobreponen unas sobre otras, generando un proceso complejo de cambios que dan origen a una nueva estructura del territorio. Este proceso ocurre debido a que un paisaje es un sistema abierto a las influencias externas (Wood y Handley 2001, Knight y Landres 2002).

4.2 Implicaciones ambientales del cambio de cobertura vegetal y uso de suelo

Cualquier actividad que el hombre realiza con el fin de obtener un beneficio produce algún nivel de degradación del ambiente; por lo que, la pérdida de biodiversidad aunque sea a nivel parcial puede alterar procesos y servicios ecosistémicos (Chapin et al. 2000), si bien naturalmente existen fuerzas fundamentales que inciden directamente en la transformación del paisaje, recientemente la acción humana se ha convertido en el principal motor de la transformación de los ecosistemas (Bocco, 2009, Melanie, 2009), las actividades, procesos o comportamientos humanos de índole económico, social, cultural o político han trastornado el entorno, generando impactos negativos sobre el ambiente, la economía y la sociedad, además de problemas ambientales tan notables como la destrucción de hábitats, deforestación, degradación y fragmentación de los hábitats relacionados con el cambio de cobertura y uso del suelo (Velázquez et al. 2002, Lambin et al. 2003, MA 2005, Oñate, 2009). Los cambios de coberturas vegetales y de usos del suelo son dos aspectos íntimamente relacionados con la conversión de la vegetación natural en espacios antrópicos (Melanie, 2009), ambos procesos describen el ambiente en función de sus atributos naturales y las actividades humanas que se desarrollan en él (Rosette, 2008). El primer concepto hace referencia a aquellos elementos de origen natural (montañas, ríos, lagos, etc.) o producidos y mantenidos por el hombre (carreteras, presas, ciudades, etc.) que se localizan dentro de un territorio (Jansen y di Gregorio, 2002). El segundo concepto poseen una connotación plenamente humana, ya que este describe a aquellas actividades humanas cuya finalidad es producir bienes y servicios para satisfacer las demandas de la sociedad en su conjunto, las prácticas de manejo y aprovechamiento de los recursos naturales, además de la distribución de las actividades socio-económicas y las fuerzas sociales, políticas y económicas que controlan dichos usos de suelo (Turner y Meyer 1994, Medley et al., 1999, Rosette, 2008).

A pesar de la diferencias entre ambos conceptos, la conversión de la vegetación natural en espacios antrópicos se cual sea su intensidad causa un deterioro de los ecosistemas, al alterar la composición e interacción de especies, los procesos ecológicos y los regímenes de perturbación en todos los niveles (Hansen et al. 2004, Challenger 1998, Rodrigues et al. 2000). Y aunque el cambio de cobertura y uso de suelo no necesariamente implican la pérdida de todos los componentes de la biodiversidad, si representan un proceso de empobrecimiento/simplificación y alteración de los ecosistemas (Flamenco, 2007).

A nivel general se considera que la mayoría de las transformaciones de los ecosistemas terrestres se originan por la conversión del uso del suelo o la intensificación del uso y la subsecuente degradación de la tierra (Lambin, 1994; Lambien y Geist, 2006). Estos procesos usualmente se engloban en lo que se conoce como deforestación, y se asocia a impactos ecológicos importantes en prácticamente todas las escalas. Localmente inducen la pérdida y degradación de suelos, cambios en el microclima (Salinas y Treviño, 2002) y pérdida en la diversidad de especies (Saunders et al., 1991); regionalmente afectan el funcionamiento de las cuencas hidrográficas (Mendoza et al., 2002; Pérez y Ortiz, 2002) y de los asentamientos humanos.

4.3 Sistemas de Información Geográfica (SIG) en el análisis de cambios de coberturas y usos de suelo

La complejidad que requiere el entendimiento de los procesos, causas e impactos de la transformación del medio (Cambios de cobertura y uso de suelo) no ha permitido generar hasta la fecha una teoría integrada que permita dar soluciones concretas a ambas problemáticas, principalmente debido a que los procesos de cambio obedecen a fuerzas que diversos agentes ejercen, tanto a nivel social, climático y ecológico, como a diferentes escalas espaciales y temporales, e inclusive históricos (Lambin y Geist, 2006, Henríquez 2011), por ello varios autores (Rodríguez, 2001, Rosette, 2008), han propuesto que el modelado y análisis de los procesos de cambio de uso de suelo, sean abordados desde una perspectiva multidisciplinaria conjuntando las ciencias ambientales, humanas e informáticas.

Los Sistemas de Información Geográfica (SIG), Teledetección y Percepción Remota PR, en los últimos años han tenido un vertiginoso crecimiento y aplicación en el campo de la geografía, planeación y gestión ambiental, gracias al uso de esta herramientas se ha podido acceder exitosamente al tratamiento, creación y análisis de la información geográfica, producción cartográfica y modelización de dinámicas complejas como lo es la urbana (Turner, 2002, Aguilera, 2008). Los SIG son herramientas para crear y manipular datos geográficos y su mayor utilidad esta en relación con la capacidad de construir modelos de simulación o representación del mundo real para analizar fenómenos específicos a partir de bases de datos digitales (Fernández, 2008), actualmente los modelos de simulación espacial de cambio de uso

de suelo se han transformado en una poderosa herramienta de análisis, orientada a explorar los mecanismos de las variables que fuerzan los cambios en el paisaje, proyectar los potenciales impactos ambientales y socioeconómicos derivados del cambio y evaluar la influencia de alternativas políticas y regímenes de manejo de los patrones de desarrollo y uso del suelo (Aguayo, 2006).

La mayoría de los modelos de análisis del cambio cobertura y uso de suelo se orientan fundamentalmente a entender y predecir el proceso de deforestación (Schneider 2008), otra parte importante intenta entender tipos de transiciones complejas como la expansión urbana y agrícola, la expansión del área cubierta con pastos, así como la recuperación de la cobertura forestal (Uriarte, Schneider y Rudel 2010). No obstante, sin importar su objetivo específico, los modelos de cambio en el uso y cobertura permiten verificar mediante el análisis de escenarios la estabilidad de los sistemas socio-ambientales (González et al., 2011).

4.3 Las escalas espaciales y temporales dentro del análisis de cambios de coberturas y usos de suelo

Al evaluar los cambios en la configuración del paisaje que tienen lugar en un territorio se requiere en primera instancia de una cartografía que recoja con suficiente detalle los distintos usos y coberturas existentes en el paisaje, principalmente debido a que cualquier patrón o forma que se pueda detectar y medir en un paisaje, dependerá fundamentalmente de la escala espacial que se emplee en la aproximación, de ahí la importancia de su adecuada selección (Forman y Gordon, 1986, Turner, 2005).

En los modelos de simulación las escalas espaciales se utilizan en términos de "Resolución" y "Extensión". La resolución es la unidad geográfica mínima de análisis del modelo, como lo es el tamaño de celda en un formato *raster* o en el nivel de generalización con el que se recaba la información en un formato vectorial. La extensión describe el área geográfica total en la que el modelo es aplicado (Rosette, 2008). Dependiendo del carácter endógeno o externo de determinadas variables como las tecnologías de manejo del terreno, la infraestructura o políticas de uso del suelo, estas pueden verse o no alteradas, a escalas pequeñas (p.ej. 1:1,000,000) los datos pueden obscurecer la variabilidad, perdiéndose cuantiosos procesos locales sobre la dinámica, a escalas grandes (p.ej., 1:50,000) se corre el riesgo de no capturar a detalle los procesos que ocurren a niveles de agregación mayores (Veldkamp y Lambin, 2001).

Al hablar de la escala temporal del modelo se hace en términos de "tiempo de paso" y "duración". El tiempo de paso es la unidad temporal menor de análisis de los cambios que ocurren en un proceso específico en el modelo, mientras que la duración es la amplitud de tiempo en la que el modelo es aplicado (Allen y Hoekstra, 1992). Dependiendo del carácter de las escalas temporales dentro de un análisis es posible evidenciar ciertas cuestiones; la más clara es que estas evitan una abstracción estática simplificadora, de modo tal que los cambios en la estructura y función puedan entenderse como parte de un proceso en el que los paisajes se encuentran inmersos (Echáinz, 2006, Forman 1995). Facilitando a través de la valoración de dichos cambios la detección de los procesos que tienen lugar en el paisaje como consecuencia de ciertas intervenciones (Rosette, 2008). De esta forma la comparación por medio de series de tiempo o de dos fechas dentro de un lapso de

tiempo determinado, posibilita cuantificar las tasas de cambio de las coberturas dentro del ámbito temporal del estudio, revelando en menor medida la dinámica del cambio variable del sistema, (Lambin, 1997; Dirzo y García, 1992).

4.4 El enfoque geográfico en la gestión ambiental

Una aproximación geográfica para la conservación, no solo implica tomar en cuenta al hombre como agente interno en el análisis y solución de los problemas de conservación, sino también un cambio fundamental en la forma como se entiende la relación hombre-naturaleza, desde este contexto, un enfoque geográfico puede proporcionar información relevante sobre las prácticas de conservación al estudiar el manejo de recursos (Bryant et al. 1998), la gobernanza ambiental (Liverman, 2004), la biología de la conservación y políticas de desarrollo sustentable (Wilbanks, 1994). Dado que los problemas ambientales se desarrollan en un lugar en específico, el enfoque principal de la geografía en el espacio, el lugar y las diferencias regionales, le dan un papel clave en la conformación de los marcos conceptuales de la política de conservación (Murphy, 2006, Lara 2012), en particular aquellas políticas encaminadas a promover el desarrollo sustentable (Wilbanks, 1994), la planeación ecológica del uso del suelo (Bocco et al 2001), Áreas Naturales Protegidas (Zimmerer, 2000), servicios ambientales y mercados (Liverman, 2004).

Existen varios autores que proponen que las políticas de conservación deben ser definidas en función de las unidades del paisaje en lugar de sobre los ecosistemas (López 2002; Velázquez and Bocco 2003; Toledo 2005; Swaffield and Primdhal 2006),

especialmente en la planificación del uso del suelo (López 1998; Bocco et al. in press; Zoido 2006), manejo de cuencas y bosques (Fregoso et al. 2001; Ashley et al. 2006), restauración de ecosistemas (Cotler et al. 2005), conservación de la biodiversidad (López 1998; Bocco et al. in press; Zoido 2006) y la conservación del paisaje per se (Pinto-Correia et al. 2006). De esta manera, el paisaje proporciona la espacialidad de un ecosistema e intensifica las características sociales del espacio geográfico determinado (Velázquez and Bocco 2003; Cotler et al. 2005). Por lo tanto, un enfoque territorial para la conservación implica una visión holística de los espacios geográficos, que analiza la peculiar configuración de sus recursos biofísicos y sociales y en consecuencia, puede facilitar la aplicación de las políticas de conservación en espacios geográficos específicos (Lara, 2012, Velázquez et al. 2003).

Desde estas propuestas, el territorio se entiende como; el espacio geográfico donde la sociedad y las entidades políticas, moldean, influyen y controlan las actividades sociales y acceso a los recursos (Sepulveda 2002), además de ser el espacio donde interactúan los recursos naturales actividades económicas y culturales, por lo cual la degradación ambiental dentro de un territorio significa al mismo tiempo la degradación social (Fracasso, 1999). De lo anterior es posible derivar, que el balance entre hábitat natural y paisaje modificado por el hombre podría determinar el futuro de la conservación de la diversidad biológica y el sostenimiento de las actividades productivas en grandes áreas del planeta, por lo que cartografiar y cuantificar el grado de conversión humana de los ecosistemas naturales es trascendental para poder formular políticas y estrategias de manejo ambientales efectivas (Rosette, 2008, Agarwal, et al. 2002).

4.5 La transversalidad en la política ambiental

La noción de la gobernanza ambiental se basa en la premisa de que los problemas ambientales son multidimensionales y multiescalares, por lo que no se pueden resolver con un enfoque de arriba hacia abajo centrado en el Estado como el que ha utilizado tradicionalmente en las políticas ambientales y de conservación. Este nuevo enfoque de gobierno, implica nuevas formas de alianzas entre el Estado y los actores sociales, que fomenten la construcción de nuevas matrices para las instituciones de anidación a través de todas las escalas, desde lo local a lo global (O'Riordan, 2004, Bulkeley 2005; Duffy 2006). Por ello, la legislación ambiental debe ser entendida básicamente como una legislación local que dentro de los marcos establecidos por la ley federal, que permita el diseño y aplicación de políticas que tengan en consideración la variedad de ecosistemas de cada región y establezcan un sistema local para la gestión ambiental (PNUMA, 2004). Entendiendo a esta última, como el conjunto de actos normativos y materiales que buscan una ordenación del ambiente. Bajo este panorama, la gestión del territorio debe partir de la relación armónica entre los aspectos económicos, sociales y el medio ambiente, para logarlo, es necesario contar con una serie de instrumentos de planificación, diagnostico, aplicación (planes programas, proyectos y acciones) que permitan alcanzar un equilibrio entre dichos aspectos, tomando como base el uso racional, protección y conservación de los recursos naturales (Sepúlveda, 2013), sin embargo, dicho equilibrio es imposible alcanzar, sin una aproximación integral que permita la incorporación de la dimensión ambiental en todas las políticas públicas, y que al mismo tiempo coordine las políticas, administraciones, y diversas acciones que influyen sobre un mismo territorio, ya que de otra manera las acciones descoordinadas de los actores que intervienen en las actividades humanas relacionadas con el ambiente provocan que el deterioro continúe (Domínguez, 2010)

Es decir que, el medio ambiente debe ser abordado como un asunto trasversal, de tal forma, que sea posible la integración de las acciones a ejecutarse por la parte operativa, así como las directrices, lineamientos y políticas formuladas desde los entes rectores, que midan la implementación de aspectos relacionados con política ambiental, (ordenamiento territorial, evaluación de impacto ambiental etc...) tomando en cuenta las particularidades de cada región. Dicha transversalidad se utiliza expresamente y se entiende como "un proceso que se realiza mediante el concurso de diversas dependencias gubernamentales, unidas bajo un objetivo común, mediante un esquema organizacional descentralizado, en respuesta a un problema público que no puede tratarse efectiva ni eficientemente desde un ámbito sectorial o por una sola dependencia gubernamental o un grupo reducido de ellas" (Semarnat, 2004: 4-5).

5 Metodología

Hoy en día existen varias metodologías para emprender estudios que analicen y determinen los procesos de cambio cobertura y uso de suelo. Sin embargo de acuerdo con Bocco *et al.* (2001) y Henríquez (2007) para llevar a cabo este tipo de investigaciones se requieren de por lo menos tres etapas:

Detección cartográfica del cambio; describe el sistema por medio de la caracterización de las coberturas vegetales y usos de suelo e instrumentos de gestión territorial

Evaluación del paisaje; descifra los procesos de conversión por medio del análisis de los patrones de cambio de cobertura y uso del suelo

Evaluación de las condiciones actuales y futras; especifica las causas del cambio de uso del suelo, por medio de la comparación de la información espacial con la documental

5.1 Detección e interpretación cartográfica y digital del cambio

5.1.1 Identificación de instrumentos de planeación territorial

Como primer paso, se realizó de una indagación bibliográfica de los documentos oficiales e investigaciones previas con el fin de identificar los programas de planeación vigentes, el tipo de políticas ambientales que establecen, las agencias de la

administración público federal encargadas de darles seguimiento, su concordancia y vinculación, así como de la ubicación geográfica donde estos operan.

Una vez identificados los instrumentos en operación, se recopilo la cartografía en formato digital disponible de cada uno de estos (Área de Protección de Flora y Fauna Cabo San Lucas, Reserva de la Biosfera Sierra Laguna, Parque Nacional Cabo Pulmo), mientras que en el caso del POEL-MLC debido a su fecha de elaboración, fue imposible obtenerlo en dicho formato, por lo cual requirió ser georeferenciado y digitalizado a partir del mapa original adjunto al documento decretado por medio de la plataforma ArcGis 10.1 (ESRI, 2012) (Figura 3), obteniendo con ello las Unidades de Gestión Ambiental necesarias para el análisis de sobreposición de estrategias territoriales con un grado de precisión del 70%, que para este tipo de técnicas se considera un precisión aceptable (Green., et al. 2000).

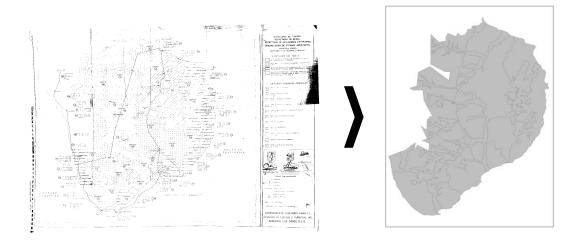


Figura 3: procesos de digitalización por medio de SIG del Programa de Ordenamiento Ecológico Local del Municipio de Los Cabos.

5.1.2 Determinación de coberturas vegetales y usos de suelo

Los insumos necesarios para el análisis de los procesos de cambio de uso de suelo, requieren inicialmente contar con mapas digitales de una misma área en dos fechas distintas (t1-t2) siendo indispensable que ambos mapas cuenten con la misma área, escala, proyección geográfica y equivalencias en las categorías que representan (Figura 4) (Bocco, 2005) y en caso de ser ráster contar con el mismo tamaño de celda.

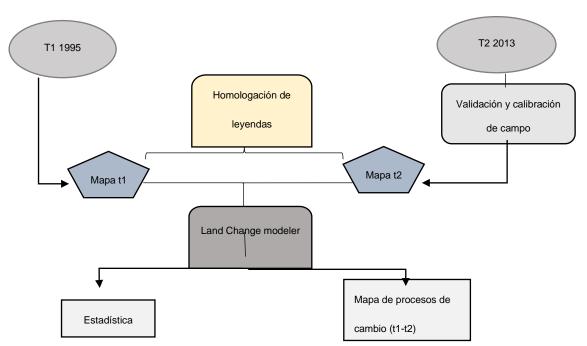


Figura 4: Diagrama técnico de general para el análisis de cambios de coberturas y usos de suelo. Tomado de (bocco, 2005).

Para poder cumplir con estos requisitos, primero fue indispensable generar un mosaico a partir de la unión de 2 imágenes por cada año de estudio ya que el área de

estudio no era captada en su totalidad en una sola imagen del satélite. Para ello se utilizaron 2 imágenes Landsat TM para el año de 1995 o (t1) y 2 Landsat 8 LDCM para el año 2013 o (t2) ambas con una resolución espacial de 30 metros.

La determinación de las cubiertas vegetales y usos de suelo se apoyó fundamentalmente en la combinación de imágenes multiespectrales Landsat 7 TM del año 1995, por medio de una imagen compuesta con falso color RGB a partir de las bandas (4, 3, 2) (Figura 5). Este tipo de imágenes compuestas permiten identificar los límites entre el suelo y el agua además de que son sensibles a la clorofila por lo que permiten resaltar el contraste cromático que presenta la vegetación primaria frente a otros tipos de cubiertas, facilitando con ello el análisis interactivo base para la interpretación visual de los sitios de entrenamiento e identificación de los tipos de vegetación y usos de suelo (INEGI, 2012, GIF, 2008, Ramírez, 2011).

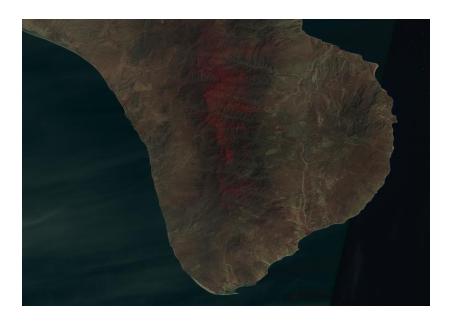


Figura 5: Mosaico de Imágenes Landsat 7 TM para el año de 1995 de 30m de resolución espacial

Además de esta información, para la detección de los sitios de entrenamiento y la posterior generación de las firmas espectrales se tomó como base la cartografía digital de usos de suelo de Carta Digital De Uso De Suelo Y Vegetación Series II y III del INEGI Escala 1: 250 000, Cartas de Uso del Suelo y Vegetación 2011 San José del Cabo escala: 1:250 000 del INEGI, teniendo como resultado final 12 tipos de coberturas y usos de suelo.

ID	Tipo de Abrev	iatura	ID	Tipo de Cobertura	Abreviatura
	Cobetrtura				
1	Duna costera y playas	DC	8	Zona Agrícola	ZA
2	Vegetación de galería	E	9	Zona Rural	ZR
3	Selva baja caducifolia	SB	10	Campos de golf	CG
4	Bosque de encino	BE	11	Cuerpos de agua temporal	CAT
5	Matorral crasicaule	CR	12	Cuerpos de agua perene	CAP
6	Matorral sarcocaule	SR			
7	Zona urbana	ZU			

Tabla 1: Coberturas vegetales y uso de suelo seleccionadas para el presente estudio.

5.1.3 Identificación de redes causales y problemáticas ambientales subyacentes al cambio de coberturas y usos de suelo

Para determinar las causas de los distintos problemas ambientales derivados de la dinámica de cambio en las coberturas y usos de suelo, se tomó como referencia el enfoque metodológico de relaciones causales implementado en la Guía para el Análisis de Impactos y Sus Fuentes en Áreas Naturales (GAIFAN) (Andrade, *et al* 1999), complementado con el enfoque de (Sorensen *et al* (1992).

Esta guía puede ser utilizada como herramienta de diagnóstico ambiental, ya que permite concebir una relación causal entre los impactos presentes en el área de interés y las fuentes que los generan a través de diagramas de situación, en los cuales es posible el desarrollo y visualización de las relaciones entre los componentes biológicos y antropológicos, incluyendo impactos, fuentes de impactos y actores (Figura 6). De esta forma, tanto los problemas como sus causas pueden describirse en términos cualitativos de acuerdo a las relaciones entre los problemas y sus fuentes (Andrade, et al., 1999, Leyva-Aguilera, et al., 1997, Bravo 1998).

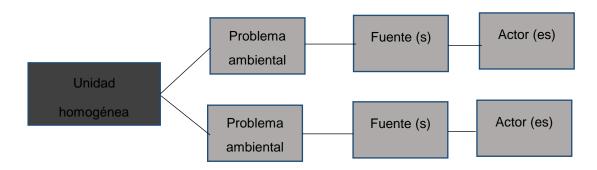


Figura 6: Diagrama de situación de redes causales (tomado de Ortiz-Lozano, 2000)

Para generar las redes causales se tomaron como unidades homogéneas a las coberturas y uso de suelo seleccionadas para el análisis de la dinámica de cambio, con base en dicha selección se indago bibliográficamente sobre los posibles problemas ambientales generados por la transformación de cada cobertura y uso de suelo y su relación con las actividades económicas y sociales de la población. Con estos datos se construyó una matriz de interacciones entre las unidades homogéneas y las distintas problemáticas ambientales detectadas clasificándolas dentro de cuatro grupos:

- Cambios ambientales cartografíables,
- Cambios ambientales cartografíables y perceptibles en el terreno
- Cambios ambientales perceptibles en el terreno
- Cambios ambientales con repercusiones sociales inmediatas

Esta clasificación emerge de la idea en la cual se percibe que los cambio ambientales generalmente no son resentidos por algún sector, pero sí lo son aquello impactos de interés social, de ahí que se deriva de forma general que los cambios que no son resentidos por algún sector son fácilmente cartografíables (Sorensen *et al* 1992).

Para poder ponderar el posible nivel de impacto de cada problemática ambiental respecto a cada unidad homogénea, se realizó una valoración de cada unidad homogénea en función de su contribución, rareza, calidad y valor como herramienta de conservación y de las problemáticas ambientales en función de su severidad, alcance, contribución actual y futura al deterioro (Sorensen *et al* 1992)..

Con el fin de corroborar, calibrar y validar la información generada en gabinete, se programó una etapa de campo (del 5 de febrero al 1 de marzo del 2013) tanto para la verificación de esta red como para obtener los sitios de entrenamiento para la imagen satelital del t2. Finalmente se realizó un diagrama en el cual se presenta la relación que hay entre los actores, las diferentes causas y los problemas ambientales derivados del cambio de cobertura y usos de suelo.

5.2.1 Clasificación supervisada de las imágenes satelitales

Una vez seleccionados los sitios de entrenamiento, por medio del software IDRISI SELVA (Clarck labs, 2012) se generaron las firmas espectrales, utilizando las bandas 1, 2, 3, 4, 5, de las imágenes Landsat 7 TM y 2,3,4,5,6 Landsat 8 LDCM, esto último debido a que las bandas de Landsat 8 presentan una nueva reorganización en su resolución espectral. Las firmas espectrales se conciben como el *Patrón de Repuesta Espectral* (SRP por sus siglas en inglés) que cada material posee naturalmente ante la interacción con la energía electromagnética (Hutchinson, 1982, Eastman, 2012). La idea detrás de un análisis de firmas espectrales se fundamenta en la identificación de las variaciones en las longitudes de onda de dicho Patrón de Repuesta Espectral de cada material dentro de una imagen (Eastman, 2012).

imágenes Landsat 7 TM 1995		Imágenes Landsat 8 LDCM 2013		
Mes		Mes		
Junio	junio	junio	julio	

Tabla 2: Fecha de captura de las imágenes satelitales utilizadas

Una vez obtenidas las firmas espectrales de acuerdo a los tipos de coberturas y usos de suelo previamente seleccionados, se realizó la clasificación supervisada, por medio del método matemático de máxima probabilidad. Esta técnica evalúa la posibilidad de que un pixel pertenezca a cada una de las clases previamente seleccionadas a partir de sus vectores de medias y matrices de varianza-covarianza (Chuvieco 2000; Eastman, 2012).

Es importante tener en cuenta que este tipo de procedimientos como cualquier otro, no se encuentra exento de inconvenientes como;

- Variaciones en las firmas espectrales de cada tipo de vegetación debido a sus procesos fenológicos
- Variaciones en las firmas espectrales por cambios de iluminación (pendientes y época del año) y humedad
- La mayoría de las coberturas terrestres consisten en mezcla de características elementales (suelo y tipos de vegetación) y que de acuerdo a la posición del satélite estas pueden ser percibidas de una u otra clase en un pixel (Eastman, 2012)

Para poder corregir y evitar que este tipo de inconvenientes introduzcan ruido a la hora de la clasificación de las coberturas, se realizó una corrección mediante la extracción de los valores mínimos, donde se asume que los objetos oscuros poseen una radiancia cercana a cero, por lo que cualquier señal en estos pixeles se debe a efectos atmosféricos, principalmente radiación difusa (Chávez, 1975).

5.2.2 Obtención de mapas temáticos

En ocasiones los mapas resultantes de las clasificación digitales contienen entidades con poca superficie casi inobservables o que se encuentran fuera del área de interés, por lo que incrementan el número de datos y afectan la visualización correcta de las coberturas haciéndose necesario el tratamiento de este tipo de ruidos por medio de la eliminación de áreas mínimas cartografiables y el recorte de la imágenes.

Para llevar esto a cabo se exportaron las imágenes supervisadas de cada año al Sistema de información geográfica ArcGis 10.1 (ESRI, 2012), a cada una de las capas primero se le recorto de acuerdo a la división política municipal de Los Cabos y posteriormente se eliminaron las áreas mínimas cartografíables. Esta técnica consistió en eliminar a todas las entidades cuya superficie fuera igual o inferior a 0.25 km² y asignarlas a las entidades con las que compartían mayor superficie garantizando que al superponer los mapas, el número de combinaciones de los cambios de vegetación y usos del suelo disminuiría sustancialmente (Rosete, 2008).

Debido a la homogeneidad existente entre las firmas espectrales de ciertas coberturas y uso de suelo algunos pixeles presentaron datos confusos que mermaban la calidad de los mapas temáticos, para evitar este tipo de ruidos fue necesario hacer una reclasificación de polígonos y categorías mediante de la reinterpretación visual de la imagen. La interpretación visual de la imagen permite resolver algunos problemas que comúnmente se encuentran en la clasificación digital y que son bastante obvios en el

análisis visual como son algunos rasgos o formas complejas de las áreas urbanas, rurales, etc (Ramírez, 2011).

5.2.3 Análisis de los patrones de cambio de cobertura y uso del suelo

Para poder realizar la comparación entre los mapas temáticos previamente tratados en el ArcMap, los mapas temáticos fueron exportados de nuevo al software IDRISI SELVA. Ambos mapas se ingresaron al módulo Land Change Modeler (LCM) a fin de generar los mapas temáticos de la dinámica del cambio, el cálculo de áreas de los estados de persistencia y transición de cada cobertura.

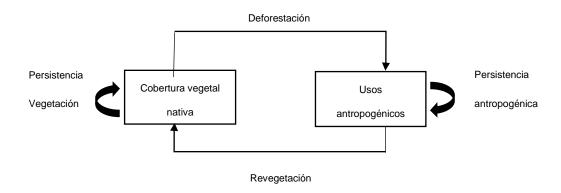


Figura 7: Modelo de procesos de cambio de coberturas y usos de suelo del LCM IDRISI

Dentro del módulo de análisis de cambio de la aplicación Land Change modeler (Clarck labs, 2012), se ingresaron como parámetros base los mapas correspondientes a la imagen más antigua o t1 (1995) Y a la imagen más reciente o t2 (2013) (Figura 7),

comprobando que ambos mapas contaran con la misma área, escala, proyección geográfica y equivalencias en las categorías que representan, adicionalmente se generó una capa base de la carreteras principales.

Una vez definidos los parámetros base, se cuantificaron los cambios de cobertura y uso de suelo mediante graficas comparativas auxiliares para la interpretación visual de los cambios en las superficies. En cada una de estas gráficas, se presenta el área en kilómetros cuadros de la superficie de cada uno de los tipos de vegetación y uso de suelo identificados.

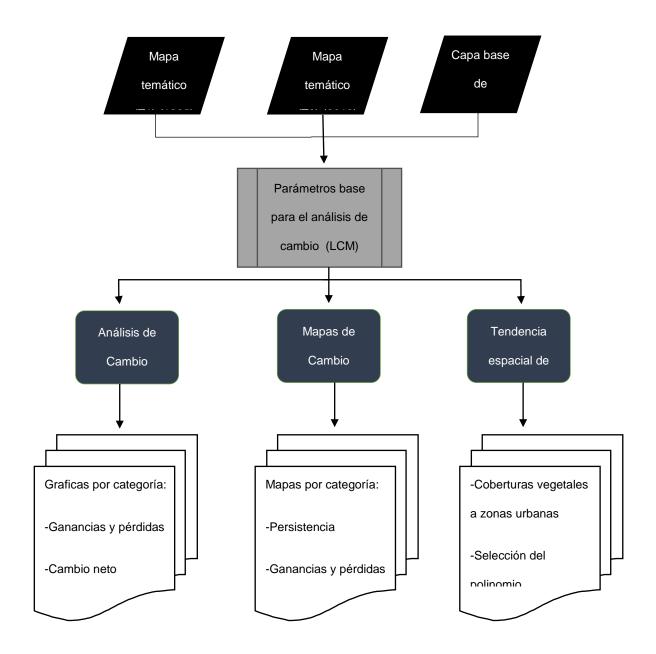


Figura 8: Diagrama de flujo del procesos de análisis de cambio espacial dentro del módulo Land Change Modeler (LCM) IDRISI Selva (Clark Labs, 2012)



Figura 8: Caracterización final de la coberturas vegetales y usos de suelo por año utilizadas en el LCM.

Con los datos obtenidos del cálculo de áreas, se seleccionaron estados de persistencia y transición de las coberturas vegetales y usos de suelo con mayor grado de transformación, a partir de los cuales se generaron los mapas temáticos de la dinámica del cambio. Conjuntamente se generó un mapa con la tendencia espacial de cambio aplicando un polinomio de tercer grado, dado que estos poseen la mejor

adaptación para la interpolación de cambios de uso de suelo debido a las correlaciones presentes.

Finalmente con base en la información de superficies de coberturas recopiladas, es posible calcular la tasa anual de cambio de acuerdo a la siguiente ecuación (FAO, 1996).

$$tc = \left[\left(\frac{s1}{s2} \right) \frac{1}{n} - 1 \right] x 100$$

Figura 9: Ecuación para el cálculo de tasa de cambio

Donde t es la tasa de cambio, s1 es la superficie de una cobertura o uso de suelo determinado en el tiempo inicial (t1), s2 es la superficie de esa misma cobertura o uso para el tiempo final (t2) y n es el número de años entre las dos fechas. Esta tasa expresa el cambio en porcentaje de la superficie al inicio de cada año y, para ello, hay que multiplicar el resultado obtenido en la ecuación anterior por 100.

5.3 Análisis de las causas del cambio de uso del suelo

Mediante el SIG se sobrepusieron los mapas temáticos de transición, con los mapas de las estrategias de planeación (ÁPFF-CSL, RB-SL, PN-CP, RE-ESJ, PDU y POEL-MLC), lo que permitió reconocer el tipo de actividades, detrás de la dinámica de cambio en aquellas Unidades de Gestión Ambiental o UGAs afectadas por los procesos de cambio y transformación e identificar si estos estos cambios responden a

lo esperado a las políticas y normatividades del POEL-MLC. Finalmente una vez identificadas las actividades detrás de la dinámica, con la incorporación de las redes causales generadas con la GAIFAN, fue posible observar la red de actores que ha tenido mayor injerencia detrás de dicha dinámica.

6 Resultados

6.1 Detección e interpretación cartográfica digital del cambio y análisis espacial de jurisprudencias

De acuerdo con la información recopilada, dentro del territorio que comprende el municipio de Los Cabos, convergen un total de seis instrumentos de territoriales que actualmente se encuentran en operación; el primero es el Programa de Ordenamiento Ecológico del Municipio de Los Cabos (POEL-MLC), seguido del Plan de Desarrollo Urbano San José del Cabo-Cabo San Lucas (PDU), tres ANP de carácter federal; Área de Protección de Flora y Fauna Bahía de Cabo San Lucas, (APFF-CSL) Parque Nacional Cabo Pulmo (PN-CP) y Reserva de la Biosfera Sierra Laguna (RB-SL), de las cuales dos son de carácter marino (PN-CP y APFF-CSL), un ANP Estatal; Reserva Ecológica Estatal Estero de San José (ver tabla 2.)

El Programa de Ordenamiento Ecológico del Municipio de Los Cabos (POEL-MLC), conforme a la ley tiene como principal función regular las actividades humanas dentro del territorio, de forma tal, que permita un uso sustentable de los recursos naturales, además de servir como refuerzo para el logro de los objetivos de conservación de las ANP. Este instrumento es el único que abarca la totalidad del territorio municipal (3,754.3 km²), y se encuentra conformado por 31 Unidades de Gestión Ambiental

(UGA) divididas a partir de su vocación de uso de suelo, y regidas por dos políticas ambientales (Conservación y Aprovechamiento) (ver tabla 1).

Nombre del instrumento	Abreviatura	Año de publicación (DOF)	Última Actualización	Carácter
Plan de Ordenamiento Ecológico del Municipio de Los Cabos	POE-MLC	1995	2008 se generó una propuesta pero no se hizo oficial	Municipal
Programa de Desarrollo Urbano	PDU	1999	2012 se generó una propuesta pero no se hizo oficial	Municipal
Área de Protección de Flora y Fauna Cabo San Lucas	APFF-CSL	1973, 2000	2012 Elaboración del plan de manejo	Federal
Parque Nacional Cabo Pulmo	PN-CP	1995	2006 Elaboración del plan de manejo	Federal
Reserva de la Biosfera Sierra de la Laguna	RB-SL	1994	2003 Elaboración del plan de manejo	Federal
Reserva Ecológica Estatal Estero San José	REE-ESJ	1994	2010 Elaboración del plan de manejo	Estatal
Área de Conservación Ecológica Cerro del Vigía	ACE-CV	1999		Municipal

Tabla 3: Lista de instrumentos de planeación territorial vigentes en el área de estudio.

ORDENAMIENTO ECOLOGICO DEL MUNICIPIO DE LOS CABOS B.C.S

UGA	POLÍTICA AMBIENTAL	VOCACION DE USO DE SUELO
1-7	APROVECHAMIENTO	Uso turístico, asentamientos humanos y secundariamente el uso pesquero
8-12	APROVECHAMIENTO	Uso agrícola, ganadero y asentamientos humanos
13-18	CONSERVACIÓN	Turismo de baja densidad de bruta de 10 ctos./Ha. Y uso conservacionistas de baja densidad y poca demanda al ambiente
19-31	CONSERVACIÓN	Conservación y actividades productivas de baja densidad, poca demanda sobre el ambiente, preservación de la naturaleza y uso forestal

Tabla 4.- Organización territorial municipal por unidad ambiental de gestión (UGA), de acuerdo al Programa de Ordenamiento Ecológico.

El Plan de Desarrollo Urbano San José-Cabo San Lucas (PDU), obedece a la intención de integración de las dos ciudades principales; San José del Cabo y Cabo San Lucas como parte del polo de desarrollo turístico de FONATUR, cuenta con una superficie aproximada de 509.71 km². Dicho plan de desarrollo se encuentra dividido en siete usos de suelo: habitacional, alojamiento turístico, mixto (habitacional, comercio, oficinas y servicios), baldío, equipamiento urbano, vialidades, y conservación ecológica en el que se incluyen playas, escurrimientos, montes y cerros, estero de San José y zonas agrícolas.

La Reserva de la Biosfera Sierra La Laguna (RB-SL) se encuentra enclavada en zona montañosa sur de la península de Baja California entre los municipios de La paz y Los

Cabos, siendo en este último municipio donde se asienta la mayor parte de la reserva incluida su zona núcleo y zonas de amortiguamiento, mismas que representan una superficie de 1124.4 km².

De acuerdo con el programa de manejo de la reserva sierra de la laguna esta se considera una "isla" de vegetación dentro del entorno árido característico de la península al constituir el único bosque tropical caducifolio dentro del estado. Dicha isla cuenta con una población que asciende a poco menos de mil habitantes distribuidos en cerca de doscientas familias que se desempeñan en labores primarias (ganadería y minería) dentro de la zona de amortiguamiento. Se estima que el desarrollo de estas actividades han tenido cierto impacto dentro del área, especialmente en lo que a sobrepastoreo se refiere, llegando a mermar más del 80% de la superficie apta para dicho fin, mientras que en el caso de la minería a cielo abierto, esta se presenta como una amenaza para la conservación particularmente en la región noreste.

A través del análisis espacial de la vinculación existente entre las políticas del plan de manejo y el POEL-MLC que regulan las actividades en dicha área, se observa que existe cierta congruencia entre ambos instrumentos, permitiendo al menos en el ámbito legal, fortalecer las actividades de conservación emprendidas por parte del ANP, ya que tanto el área natural como las área serranas que la rodean se encuentran regidas por una política de conservación y actividades productivas de baja densidad, poca demanda sobre el ambiente, preservación de la naturaleza y uso forestal (mapa 2). A excepción de un pequeña porción de la reserva que se encuentra ubicada en la parte baja de la sierra y la cual se encuentra bajo una política de

aprovechamiento turístico, asentamientos humanos y secundariamente el uso pesquero (mapa 2).

El Parque Nacional Cabo Pulmo (PNCP) es un área destinada a la protección de los ecosistemas marinos con una superficie de 7,111 Ha., que tan solo cuenta con una pequeña porción continental (zona federal) de tan solo el 1% del total de su área, en la cual no se tiene presencia de asentamientos humanos. Razón por la cual no existe una relación directa espacialmente hablando, y por ende en las políticas del POEL-MLC que coadyuven en los objetivos del PNCP. Sin embrago en el área adyacente o área de influencia del ANP, si existe de forma indirecta una relación entre ambos instrumentos, dado que las directrices del programa de ordenamiento ecológico tienen autoridad sobre la denominada zona, la cual debido a las características propias de fragilidad presentes en el ecosistema que resguarda el PNCP requieren de especial atención, primordialmente alrededor de la línea de costa.

A pesar de esta importancia, los lineamientos del POEL-MLC que rigen en esta zona contigua al parque, perecen ser de naturaleza ambigua a la hora de fortalecer la protección y conservación del medio y el desarrollo económico del mismo. Por un lado los criterios generales de las UGA establecen que la vocación del suelo será primordialmente de conservación con vocaciones de uso de suelo que van del turismo de baja densidad de bruta de 10 ctos. /Ha., y en menor medida de usos conservacionistas de baja densidad y poca demanda al ambiente, a la conservación y actividades productivas de baja densidad, poca demanda sobre el ambiente, preservación de la naturaleza y uso forestal y una serie de criterios ecológicos específicos (Figura 8).

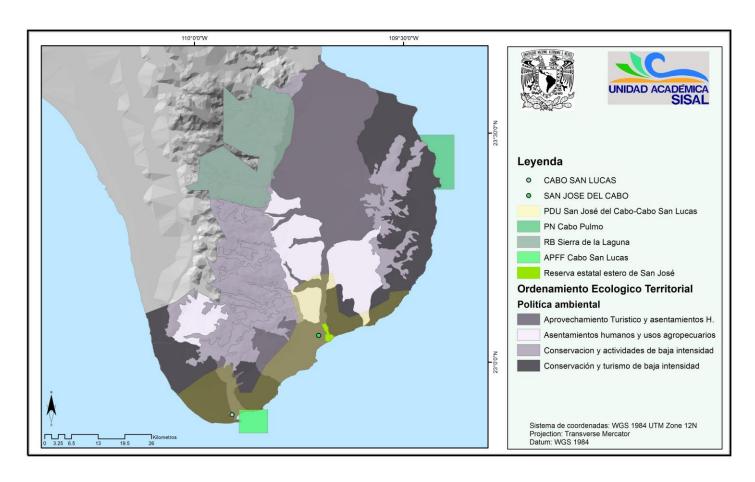


Figura 10: Digitalización de los instrumentos de planeación territorial vigentes del municipio de Los Cabos B.C.S

Por el otro lado los criterios especiales de las mismas UGA dictaminan que; 1) la franja costera y la zona marítima, desde el Rancho Las Barracas hasta Cabo Los Frailes, se establecerá como área natural protegida, además de que se propondrá que, con el fin de proteger la zonas rocosas aledañas al arrecife y de la punta de Cabo Pulmo que esta zona se declare como monumento natural. Mientras que al mismo tiempo establecen que en la misma franja costera a partir de la cota de los 20-25 m.s.n.m o 70 m a partir de la línea de costa se permitirá la creación de desarrollos turísticos con una densidad máxima de 15 a 25 ctos/ha., en las localidades de Los Frailes-Bahía frailes, Cabo Pulmo, Las Barracas, siempre y cuando los proyectos turísticos realicen estudios ecológicos específicos que establezcan las modalidades y densidades de uso que garanticen la conservación de los recursos naturales. Cabe recalcar que en lo referente a las dos propuestas de fortalecimiento de las acciones de conservación por medio de la creación del área protegía y el monumento natural, de acuerdo a la revisión bibliográfica ambos propuestas hasta la fecha no se han concretado.

El área donde se asienta el desarrollo turístico de "Los cabos", es el área de mayor interés tanto desde el punto de vista de la transversalidad entre instrumentos (POEL-MLC, PDU, APFF-CLS y REE-ESJ), como de los cambios ocurridos espacialmente hablando, al ser el lugar donde se aglomeran e interactúan con mayor intensidad las políticas de conservación y desarrollo junto con las actividades económicas dominantes en la región, de las cuales se desprenden las transformaciones del espacio. Si bien, este desarrollo turístico nace como parte de un proyecto único, las

ciudades de Cabo San Lucas y San José del Cabo fungen cada una como centros neurálgicos del corredor, por ende en ambos centros dichas fuerzas se manifiestan con mayor vigor, aunque con distinta magnitud.

En el caso de Cabo San Lucas y en especial de su bahía, las características paisajísticas presentes en el área y las zonas aledañas, han propiciado que en esta zona se concentre gran parte del atractivo tanto natural (Punta Cabeza de Ballena, El Arco, Playas del Amor, el Divorcio, El pelicano, Sol Mar, El Médano) como de infraestructura Turística (Marina, Centros comerciales, Hotelería, Recreativos etc..) y habitacional, que se comercializan y por el cual es conocida a la región (mapa 3). Adicionalmente coexisten con el Área de Protección de Flora y Fauna de la bahía de Cabo San Lucas (APFF-CSL) encargada de resguardar una superficie de 3,996 hectáreas del paisaje costero, de las cuales solo el 5% (aproximadamente unas 200 hectáreas) corresponden a la porción continental del municipio.

Los principales instrumentos con los que el APFF-CSL tiene vinculación son el POEL-MLC y el PDU, sin embrago apresar de ser haber sido decretada en 1973, en el Programa De Ordenamiento Ecológico Municipal, no se hace referencia, ni mención alguna sobre el área en ningún de los criterios ecológicos intermedios o específicos, quedando regulada solo por los criterios generales de las UGA con las que se sobrepone (5, 16, 18), así como de los establecidos dentro del programa de desarrollo urbano (Figura 9).

Esto es de suma importancia, ya que al observar espacialmente la forma en que los instrumentos interactúan, es fácilmente visible la falta congruencia entre las políticas impulsadas por el PDU con respecto a las del POEL-MLC, siendo el primero de estos

programas quien realmente ha guiado el crecimiento urbano desde su inicios por medio de la lotificación, dejando de lado la normatividad del ordenamiento ecológico, situación que propicio que el desarrollo de la urbanización se diera sin distinción a lo largo de la línea de costa tanto del área del parque como en el resto de las UGA del corredor turístico que rodean el APFF (Figura 9).

Tal es la inobservancia de la normatividad del POEL por parte del programa de desarrollo urbano, que a pesar de que estas zonas (UGA 16, 18) se tutelan bajo un política de conservación y turismo de baja intensidad, la mayor parte del crecimiento de la ciudad de Cabo San Lucas se diseñó para que se asentara en estas zonas en especial la ubicada a lo largo del litoral del océano pacifico.

Por otro lado en la unidad de gestión diseñada para el aprovechamiento turístico y asentamientos humanos (UGA 5), abarca el cauce del rio Salto seco, hecho que merma su capacidad para albergar el crecimiento urbano, y por el cual solo presenta una importante presión tanto por el desarrollo turístico como por el urbana en la parte baja de la cuenca (Figura 9).

Por el lado de la ciudad de San José del Cabo, esta presenta un panorama más congruente en la coordinación entre los programas de desarrollo urbano y el programa de ordenamiento ecológico, y por ende en la organización espacial del crecimiento urbano comparada con la de su ciudad hermana "Cabo San Lucas", esto se debe en gran medida a que la distribución de la ciudad se da de manera lineal, permitiendo que el asentamiento y futura expansión de la misma se dé en las UGA (6, 11), zonas destinadas para dicho uso de suelo de acuerdo con el POEL.

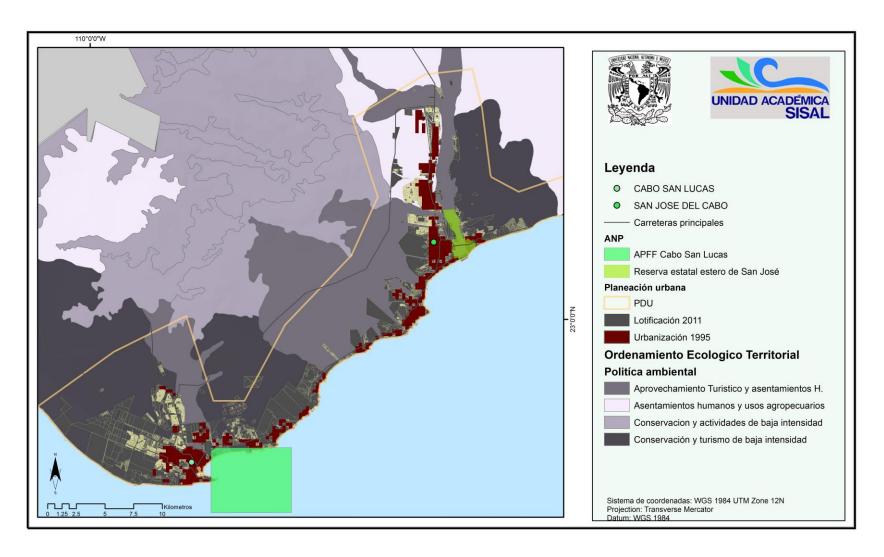


Figura 10: Urbanización en 1995 e Instrumentos de planeación territorial dentro del corredor CSL-SJC

Sin embargo a pesar de esta aparente congruencia entre instrumentos en el crecimiento de San José del Cabo, en algunos cuestiones existen discrepancias y contradicciones las normativas al interior de los instrumentos mismos, como lo es la delimitación geográfica de la UGA 4, la cual está diseñada conforme al cauce del rio San José y su estero calificado bajo la categoría de reserva estatal (REE-ESJ), y pese a que en ambos instrumentos se reconocen la importancia de la conservación de estos cuerpos de agua como fuente única de agua para consumo humano en la región, además de advertir la vulnerabilidad y riesgo que representan la creación de asentamientos a lo largo de su cauce, recalcando con ello la importancia de su conservación, su política ambiental de aprovechamiento de uso turístico y asentamientos humanos (tabla 2 y Figura 9) incorporada dentro del POEL, además de su condición de vecindad con la ciudad de San José derivada de la planeación urbana, han imposibilitado contener el desarrollo de asentamientos humanos y de infraestructura hotelera así como de y de infraestructura recreativa (marina) en los bordes de dichos cuerpos de agua, especialmente en el estero, donde es posible observar la lotificación de algunas áreas por parte del plan de desarrollo urbano (mapa 3).

Por otro lado, en función del nivel económico del turismo que en Los Cabos se capta, se ha tomado como prioridad el desarrollo de infraestructura hotelera, campos de golf, zonas residenciales de lujo y casas de verano para extranjeros a lo largo de toda la línea de playa del corredor, situación que ha propiciado que dichos complejos hoteleros y residenciales impidan el libre acceso a algunas de las playas a lo largo del corredor debido a la privatización de las mismas (Figura 10).

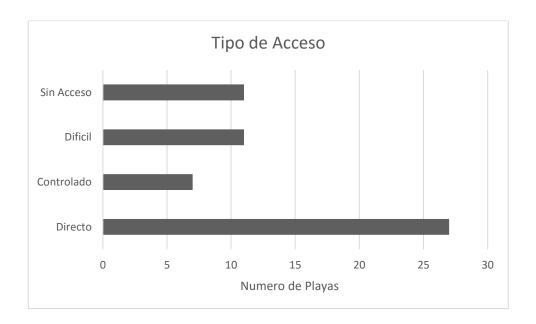


Figura 11: Accesibilidad a playas dentro del corredor turístico CSL-SJC.

De las 56 playas oficialmente reconocidas a lo largo del corredor, solo 27 de ellas permanecen con libre acceso al público, mientras que 11 son totalmente de carácter privado para el turismo y ocupantes de zonas residenciales exclusivas, otras 11 se consideran de difícil acceso debido a la accidentada orografía que presentan los senderos, sin embargo estos problemas se deben en gran medida a que las zonas hoteleras y residenciales, no respetan los derechos de paso que entre propiedades deberían existir, impidiendo el libre tránsito y que en si representa otra forma de privatización de las mismas, las 7 playas restantes se cuentan con acceso controlado, sin embargo este control se da por parte de los mismos hoteles.

Instrumentos de planeación territorial		Áreas Naturales Protegidas ANP			
	PDU	APFF-CSL	REE-ESJ	PN-CP	RB-SL
POEL- MLC	incongruente	incongruente	incongruente	incongruente	congruente
	No se toma en cuenta la normatividad del ordenamiento ecológico, impulsando el desarrollo urbano en zonas no aptas (UGA 16, 18)	No se hace referencia, ni mención alguna sobre el área en ningún de los criterios ecológicos intermedios o específicos	Mala delimitación de la política ambiental en zonas de conservación como el ríos San José y su cauce en la parte baja del estero de San José, y el rio salto seco	Declara la línea costera como zonas protegidas al mismo tiempo que permite los desarrollos turísticos.	
PDU	NA	incongruente no se hace referencia, ni mención alguna sobre el área	incongruente Recalca la importancia de la reserva pero impulsa actividades incompatibles	sin relación	sin relación

Tabla 5: Congruencias e incongruencias entre instrumentos de planeación territorial y ANP.

6.2 Análisis de los patrones de cambio de cobertura y uso del suelo

A nivel general, dentro del municipio es claramente visible que durante los 18 años que abarca el estudio (1995-2013), la mayor parte del territorio ha permanecido sin algún tipo de cambio conservado gran parte de sus coberturas originales, sin embrago también es visible el hecho de que en este lapso de tiempo se han dado transformaciones en escalas de menor y mayor grado en todas las coberturas vegetales, mismas que están relacionadas tanto a procesos naturales como a actividades antropogénicas que en conjunto convierten a la porción oeste del municipio en la de mayor grado de transformación en el municipio (Figura 11).

A partir de los mapas de cambio se puede observar que la mayor partes de las zonas de las sierras tanto de la zona este como oeste permanecieron prácticamente inalteradas con excepción de pequeñas puntos aislados. En el caso del conjunto de montañas que componen las Sierra de la Victoria, San Lorenzo, San Lázaro y la Sierra de la laguna dentro de las cuales se encuentra la reserva de la biosfera, se manifestaron diminutos parches aislados de transformaciones entre el bosque de encino y la selva baja caducifolia en las cuales perecer haber un leve proceso de recuperación del bosque de encino, sin embrago en conjunto dichos parches no perecen un proceso significativo ya que tan solo abarcan alrededor de 1.2 km² y representan menos del 0.1% del área de cobertura total del bosque (Figura 10 y 11).



Figura 12: Dinámica de Cambio territorial del año 1995 a 2013.

Gran parte de las coberturas presentaron tanto procesos de disminución como de recuperación una de las más significativas fue la selva baja caducifolia, ya que al ser una de las coberturas con mayor superficie dentro del municipio se visto afectada por varios procesos en diversos puntos, por el lado de la transformaciones a otro tipo de cobertura, estás representan una pérdida cercana a 22 km² primordialmente derivada del crecimiento urbano (6.5km²), por otro lado en los puntos que se distinguen procesos de recuperación estos ascienden a 37 km² (Figura 12), y básicamente se encuentra relacionados a la recuperación en zonas serranas y menor medida a zonas destinadas a la actividades agrícolas (11 km²), sin embrago al ver el cambio neto estos cambios no parecen ser muy significativos respecto al área de cobertura de la selva baja, ya que tan solo representa una transformación positiva del 0.3% del total de su área (Figura 11 y 13).

A nivel de los proceso de reconversión, la superficie cultivable fue sin lugar a dudas el caso más notorio ya que debido al redirecciónamiento de las actividades económicas entorno al turismo, han sufrido un importante abandono de las mismas dando como resultado una pérdida de la tierras agrícolas de aproximadamente 18 km², lo que términos de absolutos significa que el 20% del total del área cultivada en 1995 paso a formar parte de otro tipo de cobertura nativa principalmente en selva baja caducifolia (11%) y en zonas urbanas (9%), lo cual comprado con la creación de nuevas zonas de cultivo que tan solo equivalen a casi 4% respecto a 1995, implican una importante detrimento de la superficie cultivada (Figura 12 y 13).

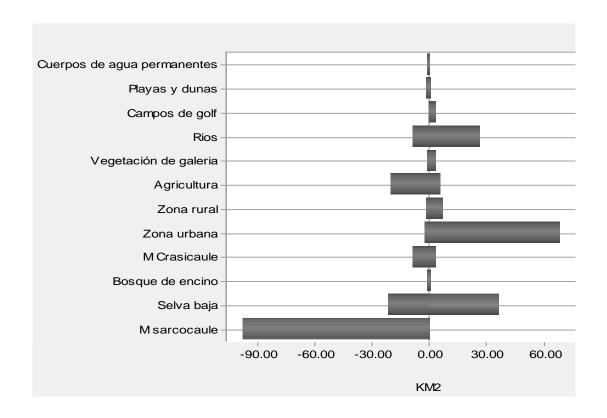


Figura 13: Ganancias y pérdidas de coberturas y usos de suelo experimentadas del año 1995 al 2013.

El matorral crasicaule es otra de las coberturas que presentaron menor grado de transformaciones tanto positivas (4km²) como negativas (8.6km²), prevaleciendo al final

las negativas con una pérdida neta del 1.7% de su superficie respecto a 1995 (Figura 13), estos cambios están compuestos básicamente por el crecimiento urbano (0.1 km²), rural (0.8 km²) y algunas zonas agrícolas (1.8 km²), además del avance de los cauces en los principales ríos (3.1km²). Este escenario entorno al avance de la frontera de los cauces de algunos ríos respecto alguna cobertura con las que estos interaccionan no es exclusivo del matorral crasicaule, de hecho esto sucede con aquellas coberturas con mayor representatividad dentro de la región como el matorral

sarcocaule y la selva baja caducifolia, para estas coberturas el avance de la frontera de los cauces represento un perdida en el caso del matorral sarcocaule cercano a 13 km² mientras que en la selva baja de tan solo fue 2.9 km², lo que en cifras netas significan que el tamaño de los cauces de los ríos incremento un 12% de su superficie (Figura 13).

Además de dicha interacción entre las fronteras de las principales coberturas con los cauces de los ríos, es importante tener en cuenta que existen distintos tipos de vegetación que presentan disminuciones o incrementos significativos de superficie debido a que se encuentran asociados a los patrones climáticos de lluvia anuales y a la dinámica de los cuerpos de agua, como es el caso la vegetación hidrófila, de galería, y áreas las áreas sin vegetación aparente, por lo que determinar si los cambios registrados se encuentran asociados a causas naturales como la recuperación, desertificación, erosión etc.. es sumamente complicado.

Si bien el análisis espacial arrojo un cambio neto positivo de poco más del 40% (3.3km²) respecto a 1995, estos cambios básicamente parecen ser resultado reconversión de la vocación económica de la región, situación que propicio un proceso de recuperación por parte de la vegetación de galería en sustitución de la agricultura temporal de aproximadamente 3km², esencialmente en la parte de San José viejo, a excepción de algunos puntos en las partes bajas de las cuencas done los ríos aportaron tan solo 0.1km² al igual que las playas (Figura11 y Figura13). Contrario a las ganancias, la mayor parte de las transformaciones negativas se dieron en las parte bajas de los principales cuerpos de agua (San José y San Dionisio-La zorra) y sus desembocaduras con el mar, así como en el estero de san José (REE-

ESJ) y representan una pérdida de 1km² cobertura (Figura 12) y las cuales básicamente se deben al crecimiento de los centros urbanos de San José del Cabo y La Ribera en especial por la construcción del nuevo desarrollo turístico-náutico en la comunidad de la Ribera, con una superficie de 360 ha. entre los que se incluyen una marina, lotes unifamiliares, hoteles, un campo de golf y zonas comerciales.

Los sistemas de playas y dunas, dada la vocación económica de la región son los sistemas de mayor importancia, ya que sus características paisajísticas los cristalizan como la principal fuente de atracción del turismo. Por este hecho el tipo de desarrollos que se pretenden reproducir a lo largo del territorio tienen como primer objetivo para el asentamiento de su infraestructura, estos sistemas y las coberturas vegetales adyacentes.

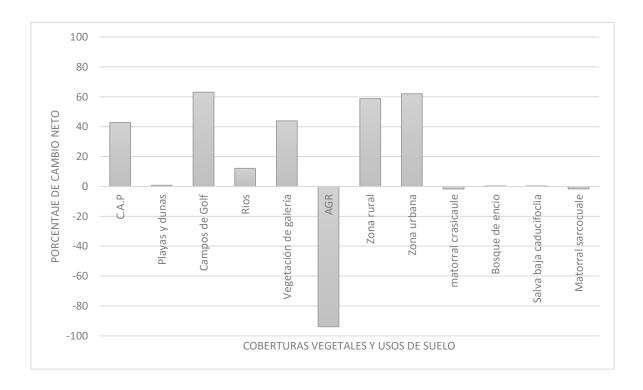


Figura 14: Transformación neta por cobertura y uso de suelo

El análisis solo se registró pequeños cambios en los sistemas de dunas y playas presentando un leve aumento de su superficie de 1.6 km² (Figura 12) en detraimiento del matorral sarcocaule, al mismo tiempo también se detectó una pérdida de 1.43km² (Figura 12) de los cuales el 77% son causados por las actividades humanas, 0.50 km² son atribuibles al crecimiento comunidades rurales costeras, 0.25 km² por el crecimiento urbano y 0.34 km² para la creación de campos de golf (Figura 11).

El matorral xerófilo sarcocaule es la cobertura vegetal con mayor representatividad a lo largo de toda la línea de costa y gran parte del territorio, este hecho implica que el matorral sea sistema que ha sufrido un mayor grado de alteración a lo largo del tiempo debido a la acción humana (Figura 12 y 15). De hecho el matorral sarcocaule se presenta como el único tipo de cobertura que presento transformaciones negativas con todas las especies que interacciona y al mismo tiempo no presento signos de recuperación.

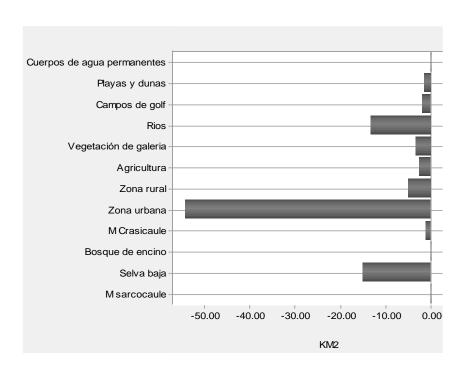


Figura 15: Cobertura del matorral sarcocaule transformada de 1995-2013.

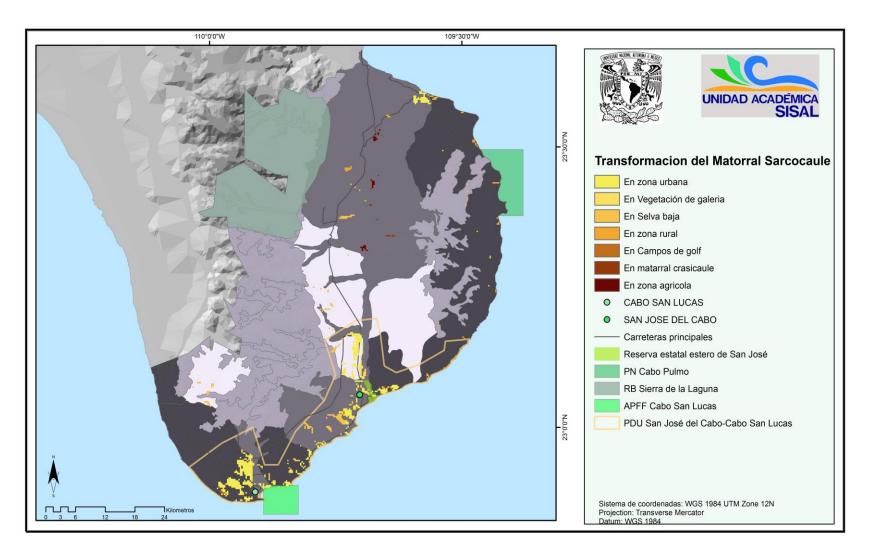


Figura 16: Transformación del matorral xerófilo Sarcocaule.

En total la pérdida de extensión del matorral sarcocaule ascendió a 98 km², de esta área tan solo el 34% se deben a procesos de transformación con el resto de las coberturas con las que interacciona, mientras que el 66% restante (64.5 km²) son el resultado del impulso de las actividades antropogénicas dentro del territorio, sin embargo destacan aquellas especialmente dirigidas a expandir la infraestructura turística y urbana entorno a los desarrollos turísticos primordialmente en el Corredor turístico Cabo San Lucas-San José del Cabo y el desarrollo de La Rivera con un avance aproximado de 55 km² (Figura 15), eso sin tener en cuenta los 2km² adicionales transformados para crear campos de golf (Figura 14). Estos cambios comparados con el crecimiento del resto de las actividades como las nuevas zonas agrícolas de tan solo 2.5 km², o como la expansión de las comunidades rurales en solo 5km² y (Figura 14), demuestran claramente la poca diversificación de las actividades económicas, la centralización y el enfasis de las actividades terciarias como único motor de desarrolló concretamente en el sector de la prestación de servicios, así como la delicada dependencia entorno a la captación de turismo (Figura 16).

El análisis de cambios demuestra rotundamente como el modelo de desarrollo ha convertido al corredor turístico en sistema de enclave económico, poblacional y de la transformación del medio (Figura 16 y 7). En tan solo 18 años (1995-2013) el avance de la mancha urbana a lo largo del territorio fue del 150% con respecto a 1995, fue responsable de más del 85% de los cambios registrados equivalentes a cerca de 64km2. Dentro de este periodo de tiempo en el cual el tamaño de la mancha urbana casi se triplico, el principal proceso de cambio de uso de suelo, fue el paso directo del matorral Sarcocaule ò de la selva baja caducifolia por la mancha urbana (Figura 17),

fundamentalmente para la expansión y creación de nuevas zonas habitacionales populares al norte de las ciudades de Cabo San Lucas y San José del Cabo, así como de los desarrollos turísticos integrales autorizados a lo largo de la costa (DTI's) (Palmilla, Puerto Los Cabos, Cabo Real, Cabo de sol) los cuales albergan gran parte de la infraestructura para el turismo de gran poder adquisitivo (Hoteles de gran lujo, marinas, campos de golf, segundas residencias y de verano (Figura 18).

Tal es la fuerza de atracción socio-económica de este sistema de enclave, que en el análisis propio del corredor turístico es claramente visible que la magnitud de los cambios en el medio han sobrepasado con creces las expectativas de todas la autoridades involucradas en el diseño, planeación y desarrollo del municipio, inclusive de aquellos programas esbozados estrictamente para direccionar el crecimiento urbano (PDU) por medio de la lotificación del espacio. Para el año 2013 el diseño proyectado por el programa de desarrollo urbano ya se encontraba obsoleto ya que en ambas ciudades el crecimiento urbano supero los límites establecidos por dicho programa, por no mencionar los del POEL-MLC que notoriamente se encuentra desfasado de la realidad del municipio (Figura 18). Cabo San Lucas fue la ciudad donde se albergó la mayor parte de la urbanización, sin embargo la expansión de la misma se dio básicamente a partir del paso directo del matorral sarcocaule a la mancha urbana, manteniéndose hasta cierto punto dentro de los límites proyectados en la lotificación con excepción de pequeñas porciones de colonias como El Pedregal, Balcones, Cangrejos y Lomas del Sol.

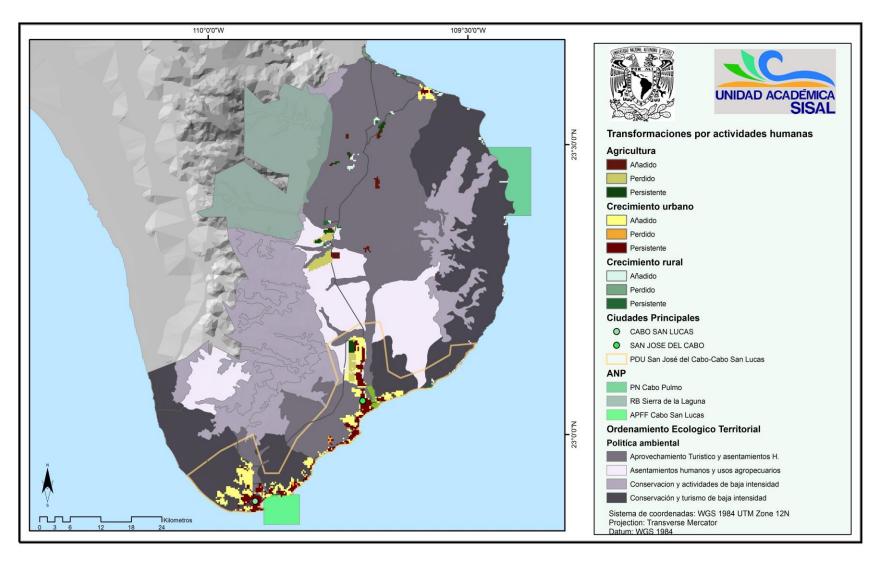


Figura 17: Transformación de coberturas vegetales y usos de suelo de 1995 a2013 debido a la acción antropogénica.

En cambio en San José del Cabo la evolución urbana se dio de forma más compleja y a cuenta de casi todas las coberturas vegetales, el cauce del rio san José, además de los únicos espacios agrícolas dentro del corredor turístico, en especial en la parte norte de la localidad (Figura 18).

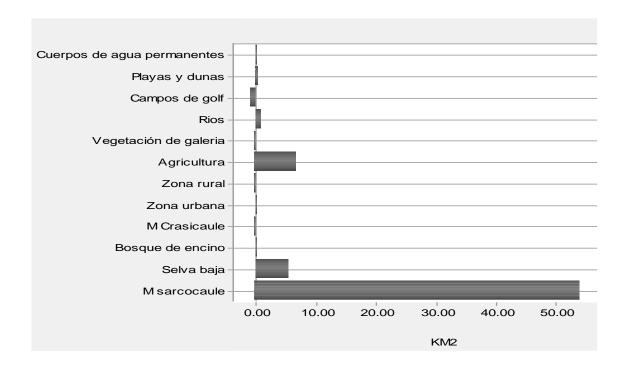


Figura 17.- Aporte de coberturas al crecimiento urbano

Desde el análisis espacial todo esto presupone un riesgo para la continuidad de las coberturas vegetales dentro del corredor turístico, ya que la vertiginosa velocidad saturación de los límites urbanos que ha mostrado en los últimos 20 años, requiere hacer uso de nuevos espacios no predispuestos para tal fin, mermando aún más la superficie de las distintas cubiertas vegetales en especial al matorral sarcocaule cuyo ritmo de perdida es bastante significativo comparado con otras especies (Figura 18).

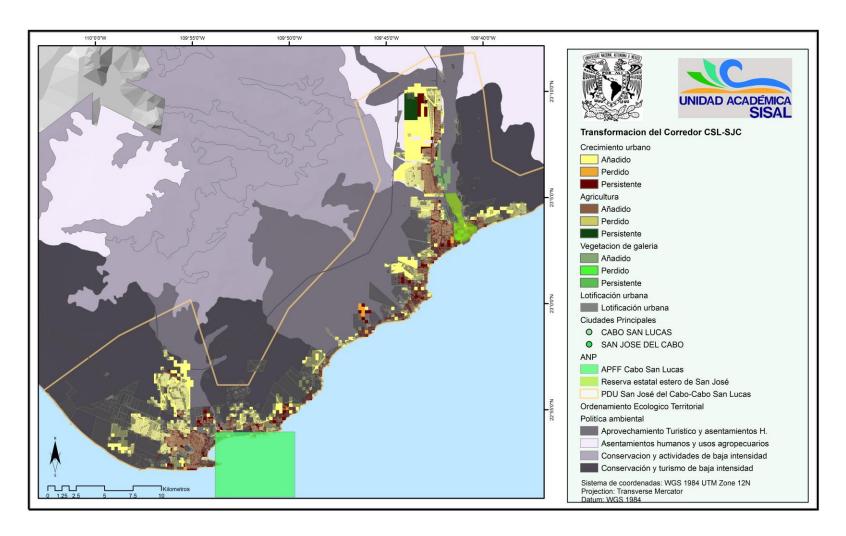


Figura 18- Transformación de las coberturas vegetales del corredor CSL-SJC debido a actividades antropogénicas.

6.3 Análisis de las causas del cambio de uso del suelo

La identificación de las redes causales subyacentes a las problemáticas ambientales del municipio derivadas del modelo de desarrollo del mismo, permitieron establecer aquellos problemas que afectan a las distintas coberturas vegetales y usos de suelo a lo largo del área de estudio, sin descartar la relaciones existentes entre dichos problemas y las causas que los generan, en especial de aquellas con mayor número de problemas.

A nivel general se detectaron 11 problemas principales, subdivididos de acuerdo al carácter de cada problemática; 2 son cambios cartografíables (alteración de los procesos erosión-acumulación costeros, alteración de la línea de costa), 2 son cambios cartografíables y perceptibles en el terreno (remoción de la cobertura vegetal, fragmentación y perdida de hábitats), 2 son cambios solo perceptibles en el terreno (perdida de fauna y remoción de dunas), los últimos 5 son cambios con repercusiones sociales inmediatas (perdida del paisaje, de la calidad y disponibilidad del agua, de identidad cultural, de espacios públicos de convivencia y contaminación orgánica y de desecho solidos) (Figura 19).

No obstante, la remoción de la cobertura vegetal es el de mayor relevancia tanto por su nivel de intensidad como por ser el único cambio que afecta a todas las coberturas y cuyas causas principales son expansión de la mancha urbana y el desarrollo de la infraestructura turística (complejos turísticos, carreteras, puentes).

	OBJETOS DE					aule			nle	oc .	SC		TOTAL	CATEGORIA
	CONSERVACIÓN	ınas		d		rcoca			asica	encir	nantc			DE IMPACTO
Cambios	Impactos	Playas y dunas	<u>r</u>	Vegetación de	, re	Matorral sarcocaule	baja	caducifolia	Matorral crasicaule	Bosque de encino	Arroyos y mantos	sou		
ambientales	impactos	Playa	costera	Veget	galería	Mator	Selva baja	caduc	Mator	Bosqı	Arroy	acuíferos		
	Alteración de los	38.3		35							9.6		82.9	Bajo
	procesos erosión-													
Cartografiables	acumulación													
	costeros													
	Alteración de la	27									6.4		33.4	Muy bajo
	línea de costa													
Cartografiables	Remoción de la	50.6		45		42.8	33.8		33.8	22.5	36		276.5	Muy alto
y perceptibles	cobertura vegetal													
en el terreno	Fragmentación y			47.5		24	15		18	15			130.5	medio
	pérdida de													
	hábitats													
Perceptibles en	Pérdida de fauna			20.6		15.8	15		15.8	15			90.5	bajo
el terreno														
	Remoción de	21.4											21.4	muy bajo
	dunas													
Con	Pérdida del	27		25		19.5	5.6		6.8	11.3			97.7	bajo
repercusiones	paisaje													
sociales	Calidad y					85	36.3		43.5	45	29.2		271	Muy alto
inmediatas	disponibilidad del													
	agua													
	Pérdida cultural y	22.5											22.5	Muy bajo
	de identidad													
	Falta de espacios	18				19							37	muy bajo
	recreativos													
	Contaminación	40.5		45		27	16.9			12.5	21.6		171	alto
	orgánica y													
	desechos sólidos													
	AMENAZA	245.3		218.1		233.1	122.6		117.9	121.3	102.8			
	TOTAL SISTEMA													

Tabla 6: Principales impactos ambientales y su nivel de amenaza por tipo de cobertura.

El segundo problema con categoría de impacto muy alta, es la calidad y disponibilidad del agua, un cambio con repercusiones sociales inmediatas, lo que adicionalmente le agrega valor si se considera las condiciones desérticas y las escasas fuentes de agua en la región, y al igual que la remoción de la cobertura vegetal, la evolución de la mancha urbana y el desarrollo de la infraestructura turística son las principales causas, aunado a los patrones de uso del agua de la población y el turismo, que al final se traducen en una sobreexplotación de los mantos acuíferos.

Otro problema ambiental con repercusiones sociales que destaca por su alto grado de impacto es la contaminación orgánica y de desechos sólidos, si bien es un problema que afecta todo el territorio es en aquellos lugares con amplia presencia humana donde se agudiza, es decir que al igual que los anteriores casos está profundamente relacionado con la evolución de la mancha urbana, la falta de ejecución de programas de gestión integral de residuos, y de centro adecuados para el manejo de los residuos (Figura 19).

El análisis de redes causales señala a los sistemas de playas y dunas costeras, y al matorral sarcocaule, como las coberturas con mayor grado de amenaza, mientras que los arroyos, el matorral crasicaule y el bosque de encino se perfilan como las coberturas menos amenazadas por dichas problemáticas. El caso de las playas y dunas costeras es de suma relevancia, ya que si bien por medio del análisis espacial estas no parecen haber sido muy alteradas al paso de los años, debido a la baja intensidad de los cambios cartografíables o perceptibles que la afectan (3). Al ser estos los principales recursos entorno el cual gira las actividades económicas del municipio existen un diverso número de amenazas que las perfilan como el sistema

más amenazado dentro del territorio, en especial si se tiene en cuenta las problemáticas con repercusiones sociales presentes (4) como son la contaminación, la pérdida del paisaje, de identidad cultural y de espacios de convivencia (Figura 19).

Ahora bien las causas de estos problemas podrían ser atribuibles al crecimiento de la mancha urbana y de la infraestructura turística, sin embargo en la realidad ambas cuestiones son el resultado de la incorporación del modelo nacional de turismo en zonas costeras, proyectado y ejecutado por medio de los "centros integralmente planeados para el turismo" (CIP) de FONATUR.

Dentro de dicho modelo de desarrollo interactúan una serie de actores que intervienen a diferentes escalas ya sea a nivel local, regional, nacional o internacional y que están ampliamente relacionados con los conflictos ambientales detectados. En total se identificaron a 16 grupos de actores principales, 5 agencias de gobierno que actúan en los tres niveles de gobierno (dos a nivel nacional, uno a nivel regional y tres a nivel municipal), 3 agentes privados con influencia local, regional y nacional y un actor privado con alcance internacional, 6 organizaciones conservacionistas 4 de carácter local y 2 de con alcance a nivel nacional, finalmente en el sector académico se encuentra 4 instituciones de alcance nacional (Figura 20).

De este grupo de actores existen en cada sector existen algunos que poseen mayor peso en la toma de decisiones, entorno tipo de modelo de desarrollo turístico, en el sector privado destaca el alcance de los consorcios turísticos internacionales y su capacidad de influenciar la toma de decisiones en todos los niveles de gobierno. Si bien el desarrollo turístico de Los Cabos es un proyecto federal impulsado por

FONATUR, a nivel de planeación urbana el gobernó municipal y el IMPLAN son las instituciones sobre las que recae la planeación urbana,

Actores	Sector	Nivel de influencia
Cadenas Hoteleras	Privado	Internacional
Política de turismo nacional (FONATUR)	Gubernamental	Nacional
SEMARNAT	Gubernamental	Nacional
Desarrollistas y constructoras	Privado	Nacional
Gobierno estatal	Gubernamental	Estatal
Gobierno municipal	Gubernamental	Municipal
IMPLAN	Gubernamental	Municipal
Dirección Municipal de Ecología y Medio Ambiente	Gubernamental	Municipal
PRONATURA A.C.:	ONG	Nacional
Centro Mexicano de Derecho Ambiental	ONG	Nacional
Amigos para la conservación de cabo pulmo A.C.	ONG	Municipal
Colectivo sierra de la laguna A.C.	ONG	Municipal
Defensores de la bahía de cabo san Lucas A.C	ONG	Municipal
Cabo Pulmo Vivo	ONG	Municipal
Asociación de Promotores y Desarrolladores	Privado	Nacional, estatal y
Turísticos Inmobiliarios de Los Cabos;		municipal
Cámara Nacional de Comercio, Servicios y Turismo	Privado	Nacional, estatal y
de Los Cabos.		municipal
UABCS, UNAM, UAM CIBNOR	Académico	Nacional

Tabla 7: Actores principales involucrados en la toma de decisiones entorno a el cambio de coberturas y usos de suelo

Esto aunado a la poca capacidad de las autoridades municipales para satisfacer dicha necesidad, además de la falta de planes y programas específicos que otorguen un verdadero ordenamiento jurídico a detalle que permita normar las obras urbanas

dentro de un marco de sustentabilidad ecológica y económica, forman un círculo vicioso que acelera la transformación indiscriminada del medio ambiente (Figura 21).

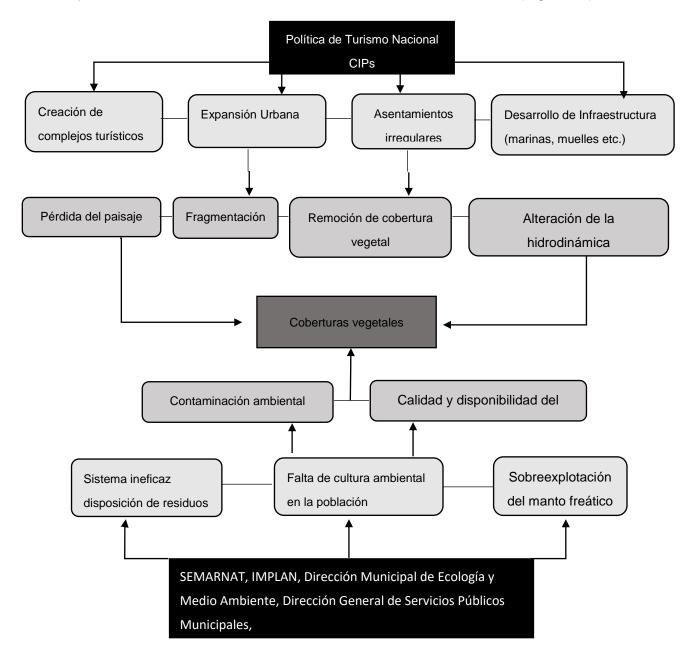


Figura 19: Red causal de las principales problemáticas ambientales.

De continuar con este esta tendencia de cambio (Figura 22), en un lapso medio se llegara un nivel de saturación urbana tal que esta fácilmente excederá los limites urbanos del polígono destinado al proyecto turístico de FONATUR, de forma tal que la cantidad de presión que estos impongan supondrán un riesgo para el ambiente y la continuidad de los procesos ecológicos de los ecosistemas existentes dentro y en torno a este tipo de centros turísticos, así como de sus recursos naturales tangibles como el agua de vital importancia y sumamente escaza, como para aquellos intangibles como los bienes y servicios (control de ciclos hidrológicos, protección ante fenómenos naturales como huracanes, el paisaje y su belleza escénica, el potencial turístico de la región etc..) y el patrimonio cultural de la región, los cuales son el principal atractivo, del que depende la vida útil comercial del centro turístico mismo y la calidad vida la población. de de

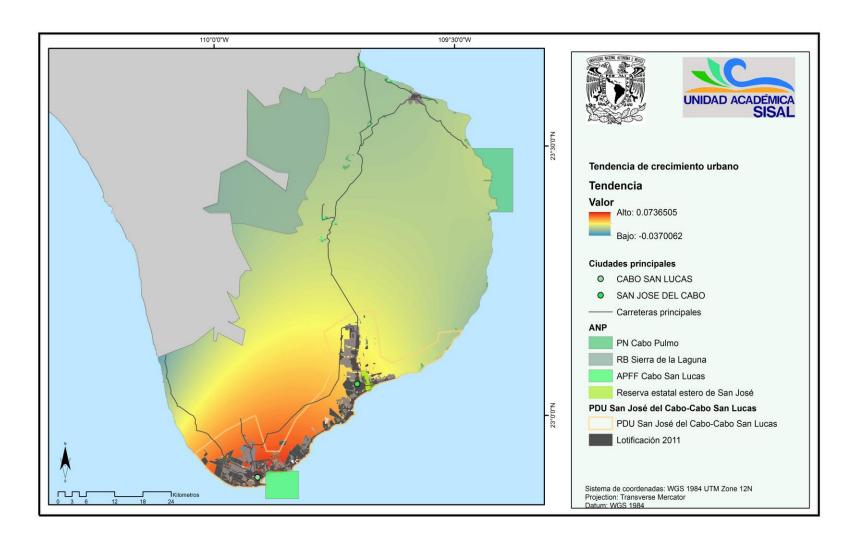


Figura 20: Tendencia de cambio de coberturas vegetales a zonas urbanas.

7 Discusiones

7.1 Detección e interpretación cartográfica digital del cambio

Los estudios dedicados a caracterizar el paisaje requieren, según el tipo de procesos que se pretende analizar de una adecuada selección de la escala espacial que permita capturar a detalle las distintas características del paisaje (Turner, 2005).

Este hecho, obstaculiza la comparación entre estudios de esta naturaleza, además de que ha generado discrepancias en el número y distribución de las coberturas reportadas para el municipio de Los Cabos B.C.S, por parte de las fuentes empleadas como referencia, dificultando con ello la selección de coberturas y usos de suelo. Así pues, solo se tomaron como referencia aquellas coberturas y usos de suelo con suficiente nivel de detalle deseable para describir de mejor forma los procesos que tienen lugar en el territorio (Forman y Gordon, 1986, Turner, 2005). La selección final de las coberturas concuerda estrechamente con los datos reportados por el INEGI considerada como la información más detallada sobre aspectos naturales y antropogénicas a nivel nacional, a excepción de las playas, dunas costeras, campos de golf y comunidades rurales, las cuales no ha sido evaluada por dicha institución.

La diversidad paisajística que presentan los elementos naturales reunidos dentro del municipio de Los Cabos lo caracterizan como un sistema complejo (Arizpe, 2012). En el área de estudio se identificaron 8 coberturas de vegetales que evidencian la heterogeneidad ambiental, y 3 usos de suelo que revelan la homogeneidad y centralización de las actividades socioeconómicas. Estos datos por un lado reflejan lo

expresado por Arriaga y Ortega (1988); Arriaga y Rodríguez-Estrella (1997), quienes resaltan la importancia de estos ambientes únicos como hábitat para especies endémicas, y por el otro lo citado por Arizpe, (2012); Bringas (1999) quien hace hincapié en la dependencia del turismo como única actividad económica.

A pesar de dicha diversidad paisajística, en la clasificación digital del paisaje la similitud entre firmas espectrales de ciertas coberturas y usos de suelo, como son las playas-dunas y los cauces de los ríos, al igual que entre la vegetación de galería y las zonas agrícolas representaron cierta problemática, además de arrojar datos que no correspondían a las categoría designadas por medio de la caracterización visual. En estos casos se recomienda el tratamiento extra los mapas resultantes por medio de la reclasificación de polígonos y la eliminación de áreas mínimas cartografiables (Ramírez, 2011, Rosete, 2008).

En la cartografía resultante para ambos años (1995-2013) se observó que la selva baja caducifolia, el matorral sarcocaule y el bosque pino-encino son las especies más representativas ocupando cerca del 36%, 47% 11% de la superficie municipal respectivamente. Estos datos concuerda con lo señalado por el INEGI (1993, 2011) y el Instituto municipal de Planeación (IMPLAN) (2008), a excepción del bosque pino-encino, cobertura para la cual se tiene reportado un porcentaje del 13%.

7.2 Análisis espacial de jurisprudencias

En cuanto al análisis bibliográfico y espacial del papel que juegan los diversos instrumentos de gestión territorial como herramientas de conservación y de

prevención ante los procesos de cambio, este último permitió determinar la efectividad de las estrategias transversales que refuerzan las acciones particulares de conservación de cada ANP y del territorio en conjunto por parte del POEL-MLC y el PDU. Es importante recalcar que dentro del municipio existen 2 ANP predominantemente marinas (PNCP, APFF-CSL), por lo que consecuentemente quedarían excluidas de un estudio de esta naturaleza, sin embargo el excluir las estrategias de las ANP con el resto de instrumentos en sus áreas de influencia continentales, impediría observar el accionar de todos los instrumentos dentro del municipio como un sistema unificado. Esto es sumamente relevante ya que de acuerdo con Lara (2012), la gestión territorial requiere ineludiblemente de una aproximación integral del espacio geográfico en sus recursos biofísicos, sociales así como de las relaciones existentes entre estos.

De este análisis se desprende que las estrategias territoriales del Programa de Ordenamiento Ecológico, carecen de una aproximación integral que otorgue uniformidad y congruencia en el tipo de políticas ambientales aplicadas a las ANP y sus zonas de influencia, en especial de aquellas ubicadas sobre la franja costera, donde existen serias contradicciones entre los criterios ecológicos específicos de ciertas UGA, que por un lado procuran la conservación del medio y por el otro el desarrollo de actividades antropogénicas no compatibles con tal fin, esta situación ha propiciado la planeación proyección y autorización por parte de algunas autoridades locales para la creación de nuevos desarrollos turísticos que por el nivel de infraestructura que estos requieren y el nivel de presión que ejercen sobre el ambiente, los vuelven incompatibles con la vocación de ciertas áreas, como es la línea costera cercana al parque nacional Cabo Pulmo, y que gracias a la presión

ejercida por instituciones no gubernamentales y la población en general han dado pie a la cancelación parcial de dichos proyectos.

De igual forma la nula vinculación existente entre las políticas del POEL-MLC y el PDU entrono a la distribución espacial de los usos de suelo y la gestión de actividades productivas que ambos instrumentos proponen, se ha traducido en una compleja problemática jurídica que claramente ha impedido un adecuado manejo del territorio a lo largo de todo el corredor turístico de FONATUR. Esta problemática tal y como lo mencionan y reconocen las propias instituciones municipales (IMPLAN Los Cabos, 2008) y diversos autores (Arizpe, 2012, Carruthers, 2012), está relacionada primero con el contexto político y técnico bajo los cuales fueron diseñados ambos instrumentos, por el lado del POEL-MLC la falta de un marco conceptual que permitiera la generalización de metodologías para su diseño se reflejaron en un instrumento a nivel local creado en una escala regional (1:250 000) poco aplicable para fines de programación y regulación del uso de suelo, adicionalmente la falta de un reglamento con herramientas de coordinación entre el resto de las dependencias imposibilitaron que la políticas ambientales impulsadas por el POEL-MLC se vieran reflejadas en el diseño y creación del Programa de Desarrollo Urbano.

Espacialmente hablando es evidente que las políticas ambientales del Programa de Ordenamiento Ecológico local no han tenido ninguna repercusión positiva como medio de control directo en la forma que el crecimiento urbano y turístico ocupa y aprovecha el territorio, desde la fecha de su declaración oficial las políticas ambientales entorno al uso de suelo en las UGA que comprenden el corredor turístico han sido ignoradas por el resto de dependencias encargadas de planeación territorial como es el caso de

la Dirección Municipal de Planeación y Desarrollo Urbano y su Programa de Desarrollo Urbano el cual desde su diseño ha orientado y alentado el crecimiento urbano y turístico de forma contradictoria con la vocación del suelo estipulada en el POEL-MLC. De acuerdo con Domínguez, (2010), es necesario la incorporación de acciones coordinadas entorna a la dimensión ambiental en las políticas públicas y diversas acciones que influyen sobre el territorio, ya que de otra forma las acciones descoordinadas pueden provocar efectos contrarios a los deseables.

7.3 Análisis de los patrones de cambio de cobertura y uso del suelo

Los mapas temáticos obtenidos de la detección e interpretación cartográfica digital del cambio y análisis espacial de jurisprudencias, permitieron por un lado establecer los procesos de cambio que tienen lugar en el área de estudio, su nivel de impacto dentro del sistema y por el otro determinar la efectividad de los instrumentos de gestión territorial como herramientas de conservación y prevención ante los cambios del espacio.

Los cambios detectados en las superficies de cada tipo de vegetación y uso de suelo se pueden congregar en dos categorías generales; aquellos ocasionados por la acción del hombre y aquellas propias de los procesos naturales de los ecosistemas. Concordando con lo señalado por Rosete, (2008) y López et al., (2006) en la primer categoría se incluyen los cambios de cualquier tipo de vegetación nativa a agricultura (desmatorralización), campos de golf, zonas urbanas y zonas rurales, así como los cambios de zonas rurales y agrícolas a zonas urbanas (sea por razones de índole

productivo expansión de la mancha urbana e infraestructura turística, o por emigración, como lo señalan Awasthi *et al.*, 2002; Jokish, 2002; Braimoh, 2005; Rudel *et al.*, 2005 y López *et al.*, 2006), en la segunda categoría se incluyen los procesos de recuperación de áreas previamente perturbadas (sucesión secundaria) y los producidos por la dinámica de los cuerpos de aqua.

Entre los procesos naturales de recuperación más representativos destacan aquellas coberturas presentes en las zonas montañosas en especial de la salva baja caducifolia la cual presento una restitución de 37 km² equivalente al 0.6% de su superficie, en el bosque de encino tan solo se observaron pequeñas zonas de recuperación de 1.2 km² o 0.1%, por lo que en términos de la superficie que ambas coberturas la recuperación no representa un proceso significativo. Es importante señalar que estos datos no pudieron ser contrastados con otros estudios, ya que estos últimos se han centrado exclusivamente en los cambios del matorral xerófilo Rosete, (2008), Arriaga (2009). Rosete, (2008) solo menciona la presencia de procesos de recuperación en las zonas de la Sierra de la Laguna, sin embargo debido a la naturaleza de su estudio no presenta cuantificación alguna de dicho proceso.

La magnitud de la recuperación de la vegetación de galería o hidrófila del 40% y el crecimiento de los cauces de algunos ríos cercana al 12% en términos de proporción son los procesos más significativos detectados, sin embargo ambos procesos perecen estar sumamente relacionados con dos factores. Por un lado tal y como lo menciona Rosete, (2008), gran parte de esta mecánica se debe a eventos hidrometeorologicos extraordinarios en espacial los ciclones tropicales, los cuales alteran la dinámica de

los ríos y lagunas costeras. Por el otro lado al eventual abandono y creación de nuevas zonas de cultivo al margen de dichos cuerpos de agua.

Los procesos de cambio más trascendentes originados por la acción humana son la transformación directa de la vegetación primaria a zonas urbanas (expansión de la mancha urbana) en especial del matorral sarcocaule y la selva baja caducifolia, y menor medida la conversión de zonas agrícolas en zonas urbanas. Durante el periodo de análisis la superficie ocupada por los asentamientos humanos en zonas urbanas se incrementó 150%, además la extensión de los campos de golf aumento en un 66%, del total de estos cambios el matorral sarcocaule aporto el 66% mientras que la selva baja caducifolia el 13% y las zonas de cultivo el 9%.

Es importante señalar que si bien todos estos procesos se encuentran focalizados a lo largo de la costa concretamente en el desarrollo turístico de Los cabos (Cabo San Lucas y San José del Cabo), la replicación y adopción del desarrollo turístico como única vocación económica del municipio empieza ser evidente a lo largo de todo el litoral, en la comunidad de la Rivera se observa un acelerado proceso de urbanización, y en menor medida en el resto línea costera donde se advierten un incremento de las comunidades rurales. A pesar de la dimensión de estos procesos en términos absolutos de superficie transformada el 93% del territorio permaneció sin cambio alguno.

La cobertura con más cambios registrados fue el matorral sarcocaule aportando cerca del 1.5% de su superficie, principalmente al proceso de urbanización, si bien estas cifras en términos absolutos de la superficie no parecen representar una pérdida

significativa, es importante recalcar que el matorral sarcocaule es la cobertura con mayor distribución dentro del territorio de Los Cabos.

Finalmente, existen evidencias físicas claras de pérdida de playas y dunas por el crecimiento de los asentamientos humanos y el crecimiento de la infraestructura turística como son hoteles marinas y campos de golf, sin embargo estos cambios a nivel de extensión no son significativos, de forma tal que más del 98% del superficie total permaneció sin cambios. Es importante tomar con precaución estos datos, principalmente debido a que los sistemas de playas-dunas son altamente fluctuantes en su forma debido al efecto del viento y as corrientes marinas, así como a efectos meteorológicos como huracanes.

7.4 Análisis de las causas del cambio de uso del suelo

La identificación de redes causales permitió determinara los problemas ambientales así como los efectos que estos ocasionan, en el presente estudio se clasificaron las fuentes de las problemáticas ambientales generadas por el cambio de uso de suelo de acuerdo a su condición⁴ y carácter⁵, lo que permitió distinguir el tipo de presión que estos ejercen sobre el territorio de Los Cabos.

Dentro del municipio de Los Cabos, el crecimiento de la mancha urbana representa el más importante proceso de cambio de cobertura y uso de suelo inducido por la actividad humana. Sin embargo de acuerdo con (Rosete et al., 2007, Reyes et al.,

_

⁴ natural o antropogénico

⁵ cartografíables, cartografíables y perceptibles en el terreno, perceptibles en el terreno, con repercusiones sociales inmediatas

2006, Sahagún, 2011, Lambin et al, 2003, Bocco, 2004, Turner y Meyer 1994) los cambios de suelo no solo repercuten en la pérdida de la cobertura vegetal, sino que también desencadenan e intensifican otros impactos ambientales.

La expansión de la mancha urbana en el municipio por lo menos contribuye a 11 conflictos ambientales adicionales de distintas órdenes y magnitud. Sin embargo tal y como lo reportan Mendoza, (2014), Rosete et al., (2007) y Arizpe (2012), la calidad y disponibilidad del agua representa el conflicto más serio a nivel social, inclusive por encima de la perdida de cobertura. Lo anterior de acuerdo con Sorensen et al (1992) y Lezama (2004), probamente se debe a que los cambios ambientales generalmente solo son resentidos si de alguna forma repercuten en los interese sociales de los distintos grupos sociales. El agua al ser un recurso tan escaso y de vital importancia para todos los grupos sociales, los cambios en su distribución y aprovechamiento son fácilmente resentidos, al igual que la reducción de las playas y dunas como espacios públicos debido a la privatización.

De los 17 actores principales que integran los 4 grupos sociales que intervienen en la planeación y generación de nuevas propuestas de desarrollo, existen algunos con mayor relevancia en la toma de decisiones. Al ser una zona de alto valor ecológico económico y comercial (CONABIO 2008), el nivel de actores con mayor peso en la toma de decisiones en cuanto a la dirección de la actividades productivas se refiere es el nacional, esto representa una seria desventaja ya que la toma de decisiones con un enfoque de arriba hacia abajo centralizado dificulta la aplicación de políticas congruentes con las necesidades locales (O'Riordan, 2004, Lara, 2012, Velázquez et al. 2003, Murphy, 1006).

Tal es el nivel de influencia en la toma de decisiones a nivel nacional entorno a la dirección y planeación de las actividades productivas en la región, que a nivel local las principales dependencias encargadas de la planeación como son la Dirección General de Planeación, Desarrollo Urbano y Ecología, Dirección Municipal de Planeación y Desarrollo Urbano y el Instituto Municipal de Planeación (IMPLAN) han quedado con una limitada capacidad de acción en la toma de decisiones entorno al uso del territorio, además la falta coacción y de agendas transversales entre dichas dependencias y el resto de las autoridades municipales en las que se aborde los problemas ambientales derivados del modelo de desarrollo y el ritmo de crecimiento de la mancha urbana han propiciado que hasta le fecha sea imposible la actualización de ambos instrumentos. De acuerdo con (O'Riordan, 2004, Bulkeley 2005; Duffy 2006) para hacer frente a estas situaciones, se requiere adoptar la noción de la gobernanza ambiental de forma tal que esta permita la creación de nuevas alianzas entre el Estado y los actores sociales involucrados a diferentes escalas. De esta forma es posible insertar un enfoque holístico que permita el diseño, aplicación y seguimiento de políticas que consideren las características particulares de la región y establezcan un sistema local para la gestión ambiental como son los programas de ordenamiento ecológico territorial (Lara, 2012, Velázquez and Bocco 2003; Cotler et al. 2005, Velázquez et al. 2003).

A nivel nacional desde hace varios años existen las agendas para la transversalidad de las políticas públicas para el desarrollo sustentable (SEMARNAT, 2012). Sin embargo la falta de voluntad política y de la administración pública que no están relacionadas con de coordinación entre las autoridades municipales, estatales y federales, han entorpecido el avance de las políticas de planeación, desarrollo

económico y conservación. Esto probamente esté relacionado con el hecho de que la gobernanza ambiental es un tema poco abordado por las agencias el uso, aprovechamiento, conservación y protección de los recursos naturales en todas las escalas, particularmente a nivel local (Azuela, 2006). Por si fuera poco, la estrecha dependencia de las actividades económicas del municipio entrono al turismo, han resultado en una fuerte resistencia por parte de las autoridades en todos los niveles, por incorporar la dimensión de la sustentabilidad ambiental en las decisiones macroeconómicas, presupuestales y de desarrollo (Calva, 2007, Provencio, 2007).

8 Conclusiones

Los análisis de cambios de coberturas y usos de suelo, son una herramienta eficaz para evaluar de forma clara continua y precisa la expresión espacial de las políticas territoriales de los instrumentos de planeación territorial y política ambiental.

La escala empleada en el presente estudio permitió caracterizar a detalle las características espaciales del municipio de los Cabos, no obstante las múltiples características geográficas y paisajísticas que definen a gran parte del territorio como un desierto costero, le proporcionan cierta homogeneidad en el patrón de respuesta espectral entre las especies que componen el matorral xerófilo y ciertos tipos de suelos.

En el periodo de 1995-2013, los principales procesos de cambio originados por la actividad humana es la urbanización de la franja costera ya sea por la conversión directa de alguna cobertura a zonas urbanas, o por la conversión de zonas agrícolas y rurales en asentamientos humanos, mientras que el proceso natural más relevante es la recuperación de la selva baja caducifolia en sustitución de zonas agrícolas.

En términos absolutos gran parte del territorio ha permaneció sin cambio alguno, por lo que a nivel general los cambios de cobertura y uso de suelo podrían considerase como de bajo impacto, sin embargo en términos del corredor turístico Cabo San Lucas-San José, la densidad y ritmo del proceso de cambio por la urbanización representan un importante proceso transformación.

La reconversión económica hacia el turismo y el acelerado crecimiento demográfico dentro del corredor turístico ha propiciado que la expansión de la mancha urbana se

diera de forma desordenada y carente de apego a los instrumentos de planeación, especialmente en las últimas dos décadas incrementándose las áreas degradadas y el empobrecimiento el paisaje natural.

El turismo puede ser un factor dinamizante social y económicamente para el desarrollo de zonas rezagadas económicamente, sin embargo, sin la aplicación de las medidas de ordenación oportunas, se incrementa el riesgo de generar impactos socio-ambientales con consecuencias irreversibles.

El análisis de sobreposición de capas muestra que las políticas ambientales del plan de desarrollo urbano y Programa Ordenamiento Ecológico municipal han carecido de resultados positivos y tangibles como medida de mitigación de los problemas derivados del modelo turístico y económico.

El programa de ordenamiento ecológico municipal ha carecido históricamente de mecanismos metodológicos, acciones políticas y sociales relevantes como para ser tomado en cuenta como herramienta de planeación, manejo y administración de los recursos naturales, destacándose lamentablemente como el único instrumento de esta naturaleza en México sin haber sido ser actualizado en 20 años.

Mientras no exista una compatibilidad entre el modelo económico y los planes encaminados al uso sustentable de los recursos naturales, estos últimos carecerán de resultados visibles. La falta de voluntad política, transversalidad y coacción entre instituciones para que nuevas acciones de gobierno con enfoques y procedimientos que tiendan hacia un desarrollo sustentable sean adoptadas, es el mayor de los retos que enfrenta el municipio en materia de política ambiental.

El análisis de tendencia de cambio sugiere que en la próxima década la trayectoria del crecimiento urbano dentro del corredor turístico se acelerara como resultado del crecimiento exponencial demográfico. Por ello es urgente que se revalúe y se genere un nuevo proceso en la política de desarrollo, que incorpore efectivamente la dimensión ambiental, de forma tal que esta permita un sistema planeación y ordenación efectivo que; coadyuve a mitigar y corregir los problemas ambientales ocasionados por el actual modelo, y que guie el proceso de desarrollo y crecimiento bajo un marco del uso sustentable de los recursos, permitiendo potencializar las fortalezas y capacidades competitivas como destino turístico.

El conjugar los sistemas de información geográfica y percepción remota, junto con herramientas cualitativas permitieron caracterizar a fondo la respuesta de la dinámica espacial ante los instrumentos de planeación territorial del municipio de Los Cabos. No obstante los datos que dentro de esta investigación se presentan sirven como información base un mejor entendimiento de los impactos ambientales generados por la creación de polos turísticos en zonas costeras, de igual forma brinda fundamentos para la toma de decisiones a favor de una planeación y aprovechamiento sustentable del territorio.

9 LITERATURA CITADA

Ana García de Fuentes.- Cancún; Turismo y Subdesarrollo Regional.- UNAM. Mex. 1979. p.35.

AGARWAL, C., G.M. GREEN, J.M. GROVE, T.P. EVANS, Y C.M. SCHWEIK, 2001. A review and assessment of land-use change models: dynamics of space, time, and human choice. USDA Forest Service General Technical Report NE-297. Center for the Study of Institutions, Population, and Environmental Change, Indiana University, Bloomington (IN) and USDA Forest Service, Northeastern Research Station, South Burlington (VT).

Amorós-López. Et al (2009). Cadena de procesado de imágenes landsat para la generación de mosaicos a escala regional. Teledetección: Agua y desarrollo sostenible. XIII Congreso de la Asociación Española de Teledetección. Calatayud, 23-26 de septiembre de 2009. pp. 601-604. Editores: Salomón Montesinos Aranda y Lara Fernández Fornos

Arriaga L. (2009) Implicaciones del cambio de uso de suelo en la biodiversidad de los matorrales xerófilos: un enfoque multiescalar. Investigación ambiental 2009 • 1 (1): 6-16. Azuela, A., M.Á. Cancino y C. Contreras, 2006. El ordenamiento ecológico del territorio en México: génesis y perspectivas. México, SEMARNAT.

Balarezo, V. Tomás. 1990. Viabilidad del sector turístico en el Desarrollo Socio-Económico de Baja California Sur, desde una perspectiva ambiental (caso de Los Cabos, BCS). Colegio de la Frontera Norte. 8 de agosto de 1990.

Brizuela, Armando B. (2007). Aplicación de métodos de corrección atmosférica de datos Landsat 5 para análisis multitemporal. TELEDETECCIÓN - Hacia un mejor

entendimiento de la dinámica global y regional Ed. Martin, 2007, ISBN: 978-987-543-126-3.

Bocco, G., Mendoza, M., Masera, O., 2001. La dinámica del cambio de uso del suelo en Michoacán. Una propuesta metodológica para el estudio de los procesos de deforestación. Investigaciones Geográficas, Boletín 44, 18-38.

Calva (2010). Sustentabilidad y desarrollo ambiental. Volume 14 de la Agenda para el desarrollo, Conocer para decidir . UNAM 2011

Carranza Edwards, A., A.P. Marín Guzmán, y L. Rosales Hoz, 2010. Problemática ambiental en la gestión costera-marina, p.89-100. En: E. Rivera-Arriaga, I. Azuz-Adeath, L. Alpuche Gual y G.J. Villalobos-Zapata (eds.). Cambio Climático en México un Enfoque Costero-Marino. Universidad Autónoma de Campeche Cetys-Universidad, Gobierno del Estado de Campeche. 944 p

Cervantes Borja. Jorge F. 2007. El ordenamiento territorial como eje de planeacion de proyectos de turismo sustentable. Universidad Nacional Autónoma de México. *Ciencias Sociales Online*, Julio 2007, Vol. IV, No. 2. Universidad de Viña del Mar – Chile.

Dirzo, R., García, M.C., 1992. Rates of deforestation in Los Tuxtlas, a neotropical area in southeast Mexico. Conservation Biology 6, 84-90.

Flamenco, A (2007). dinámica y escenarios sobre los procesos de cambio de cobertura y uso del terreno en el sureste de méxico: el caso de la selva el ocote, chiapas. Instituto de ecología. UNAM.

Ganster, P, Arizpe O y Ivanova A. (2012). Los Cabos: prospectiva de un paraíso natural y turístico, SDSU&UABCS, ISBN .

Gerardo B, (2004). Cartografía y sistemas de información geográfica en el manejo integrado de cuencas. El manejo integral de cuencas en México: estudios y reflexiones para orientar la política ambiental. Instituto Nacional de Ecología, pag. 2004 – 264.

González, J (2013). Problemáticas urbanas en los enclaves turísticos: turismo como estrategia para el ordenamiento urbano y territorial. Bitácora enero-julio 2013.

González O. et al. (2010). Cambio de cobertura y uso del suelo en la cuenca del río mololoa, nayarit. Revista Biociencias Julio 2010 Vol. 1 Núm. 1 Año 1 Páginas 19 a 29.

González, J.J., Etter, A.A., Sarmiento, A.H., Orrego, S.A., Ramírez, C., Cabrera, E., Vargas, D., Galindo, G., García, M.C., Ordoñez, M.F. 2011. Análisis de tendencias y patrones espaciales de deforestación en Colombia. Instituto de Hidrología, Meteorología y Estudios Ambientales-IDEAM. Bogotá D.C., Colombia. 64 p.

Green P.E., J.P. Mumby, A.J. Edwards & D.C. Clark. 2000. Remote sensing handbook for tropical coastal management. UNESCO, London, England. 320 pp

Henríquez y Azocar, Gerardo. 2007. Propuesta de Modelos Predictivos en la Planificación Territorial y Evaluación de Impacto Ambiental, Scripta Nova, Universidad de Barcelona.

INE-SEMARNAT, 2007. Océanos y costas: análisis del jurídico e instrumentos de política ambiental en México. Secretaría de Medio Ambiente y Recursos Naturales (SEMARMAT) Blvd. Adolfo Ruiz Cortines 4209. Col. Jardines de la Montaña 14210 Deleg. Tlalpan México, D.F.

INE (2005). Evaluación preliminar de las tasas de pérdida de superficie de manglar en México", septiembre de 2005, pp. 8 y 9.

Kostrowichi Jerzy. (1986). *Un Concepto Clave: Organización Espacial*. UNAM. México. pp17-18

Lambin EF. Modelling and monitoring land-cover change processes in tropical regions. Progress in Phisycal Geography 1997; 21 (3): 375-393.

Lara Y. Chapela F (2006). Dilemas institucionales del Ordenamiento Territorial. Ordenamiento Territorial Comunitario: un debate de la sociedad civil hacia la construcción de políticas públicas. Instituto Nacional de Ecología (INE-Semarnat) Periférico sur 5000, col. Insurgentes Cuicuilco 04530 México, D.F.

López, E., G. Bocco, M. Mendoza, A. Velázquez and R. Aguirre (2006) "Peasant emigration and land use change", *Agricultural Systems*, no. 90, pp. 62-78.

Mas JF, Velázquez A, Couturier S. La evaluación de los cambios de cobertura/uso del suelo en la República Mexicana. Investigación Ambiental 2009; 1: 23-39.

Ramírez, F. (2007) "actualización de la tasa de cambio del uso del suelo en la reserva de la biosfera los tuxtlas". Informe final proyecto sierra de santa marta, A. C. Comisión Nacional de Áreas Naturales Protegidas. Dirección Regional Planicie Costera y Golfo de México. Octubre de 2011

Reyes HH, Aguilar RM, Aguirre RJ, Trejo VI. Cambio en la cubierta vegetal y uso del suelo en el área del proyecto Pujal-Coy, San Luis potosí, México, 1973-2000. Investigaciones Geográficas 2006; 59: 26-42.

Rosete. F. et. Al (2007) Cambio de uso del suelo y vegetación en la Península de Baja California, México. *Investigaciones Geográficas, Boletín del Instituto de Geográfia, UNAM* ISSN 0188-4611, Núm. 67, 2008, pp. 39-58

SECTUR, 2014. Agenda de competitividaddel destino turístico de los cabos. Secretaria de Turismo México, D.F., febrero de 2014.

SEMARNAT. 2006. Estrategia Nacional Para el Ordenamiento Ecológico del Territorio en Mares y Costas. Secretaría de Medio Ambiente y Recursos Naturales, México. 38 pp.

ANEXOS

IMPACTOS	SEVERIDAD	ALCANC	PROMEDIO	FUENTES	Condiciones	Condiciones	PROMEDIO	Playas y	Vegetación	Matorral	Selva baja
		Е			actuales	futuras		dunas	de galería	sarcocaule	caducifolia
								costeras			
								2.25	2.5	1.5	1.25
Alteración de				Uso de vehículos motorizados	1	2	1.5	6.8			
los procesos				sobre dunas y playas							
erosión-				Construcciones fuera de	4	2	3	13.5	15.0		
acumulación				reglamento							
costeros	2	2	2	Creación de represas y	4	4	4	18.0	20.0		
				marinas							
							TOTAL	38.3	35.0	0.0	0.0
				Construcción de desarrollos	4	4	4	18.0			
				turísticos en la costa							
Alteración de				Uso de vehículos motorizados	2	2	2	9.0			
la línea de				sobre dunas y playas							
costa				Asentamientos humanos	2	2	2				
	2	2	2	ilegales							
							TOTAL	27.0	0.0	0.0	0.0

				Asentamientos humanos	2	2	2		15.0	9.0	7.5
				ilegales							
				Tala	2	1	1.5				5.6
				Árage amfailte							
Remoción de				Áreas agrícolas	2	1	1.5			6.8	5.6
la cobertura				Uso de vehículos motorizados	2	1	1.5	10.1			
vegetal				sobre dunas y playas					_		
				Crecimiento de la mancha	4	4	4	27.0	30.0	18.0	15.0
	4	2	3	urbana							
				Construcción de desarrollos	2	2	2	13.5		9.0	
				turísticos en la costa							
							TOTAL	50.6	45.0	42.8	33.8
				 Tala	1	1	1				
					•	1	1				
				Establecimiento de áreas para	2	2	2		10.0	6.0	5.0
Fragmentació				uso pecuario							
n y perdida				Descargas de aguas negras	1	2	1.5		7.5		
de hábitats				en fuentes de agua							
				Crecimiento de la mancha	4	4	4		20.0	12.0	10.0
	2	2	2	urbana							
				Construcción de desarrollos	2	2	2		10.0	6.0	
				turísticos en la costa							

							TOTAL	0.0	47.5	24.0	15.0
				Tala	1	1	1				1.9
Perdida de											
fauna	2	1	1.5	Establecimiento de áreas para	2	1	1.5		5.6	3.4	2.8
				uso pecuario							
				Crecimiento de la mancha	4	4	4		15.0	9.0	7.5
				urbana							
				Asentamientos humanos	2	1	1.5			3.4	2.8
				ilegales							
							TOTAL	0.0	20.6	15.8	15.0
				Construcción de desarrollos	4	2	3	6.8			
				turísticos en la costa							
				Remoción de arena	1	1	1	2.3			
Remoción de											
dunas				Uso de vehículos motorizados	2	1	1.5	3.4			
		4	4	sobre dunas y playas							
	1	1	1	Construcciones fuera de	4	4	4	9.0			
				reglamento							
							TOTAL	21.4	0.0	0.0	0.0

				Asentamientos humanos	2	2	2		5.0	3.0	2.5
				ilegales							
				Construcción de desarrollos	4	4	4	9.0	10.0	6.0	5.0
				turísticos en la costa							
Perdida del				Construcciones fuera de	2	1	1.5	3.4	3.8	2.3	1.9
paisaje				reglamento							
				Falta de centros apropiados	2	1	1.5	3.4	3.8	2.3	1.9
	1	1	1	para la disposición final de							
				residuo							
				Falta de programa integral de	1	1	1	2.3	2.5	1.5	1.3
				manejo de desechos							
				Remoción de arena	1	1	1	2.3			1.3
				Construcción de	4	2	3	6.8		4.5	3.8
				fraccionamientos privados							
							TOTAL	27.0	25.0	19.5	17.5
				Asentamientos humanos	2	2	2				
				ilegales							
				Tala	1	1	1				
				Construcción de desarrollos	2	2	2				
				turísticos en la costa							
Calidad y				Descargas de aguas negras	1	1	1				

disponibilida				en fuentes de agua							
d del agua				Crecimiento de la mancha	4	4	4				
				urbana							
				Patrones de uso de agua del	2	2	2				
				desarrollo turístico							
	2	4	3	Patrones de uso del agua de	2	2	2				
	_	-	*	la población							•
				Falta de programa integral de	2	2	2				
				manejo de desechos							
							TOTAL	0.0	0.0	0.0	0.0
				A contractor businesses							
				Asentamientos humanos	1	1	1			3.0	2.5
				ilegales							
				Uso de fertilizantes	2	2	2			6.0	5.0
				inorgánicos							
				Descargas de aguas negras	2	1	1.5				
				en fuentes de agua							
Contaminaci				Crecimiento de la mancha	4	4	4			12.0	10.0
ón del				urbana							
subsuelo y				Patrones de uso del agua de	2	1	1.5				3.8
mantos		2		la población							
freáticos				Falta de centros apropiados	4	2	3			9.0	7.5
				para la disposición final de							
				residuo							

				Falta de programa integral de	4	2	3			9.0	7.5
				manejo de desechos	•	-	J			0.0	
	2		2								
			_								
							TOTAL	0.0	0.0	39.0	36.3
				Crecimiento de la mancha	1	1	1	4.5			
Perdida				urbana							
cultural y de	2	2	2	Construcción de desarrollos	4	4	4	18.0			
identidad				turísticos en la costa							
							TOTAL	22.5	0.0	0.0	0.0
				Construcción de desarrollos	4	4	4	9.0			
Falta de				turísticos en la costa							
espacios	1	1	1	Construcción de	4	4	4	9.0			
recreativos				fraccionamientos privados							
							TOTAL	18.0	0.0	0.0	0.0
				Construcción de desarrollos	4	2	3	10.1	11.3	6.8	
				turísticos en la costa							
				Crecimiento de la mancha	4	4	4	13.5	15.0	9.0	7.5
Contaminaci				urbana							
ón orgánica y				Falta de centros apropiados	4	2	3	10.1	11.3	6.8	5.6
desechos				para la disposición final de							
solidos				residuos							

2	1	1.5	Falta de programa integral de manejo de desechos	2	2	2	6.8	7.5	4.5	3.8
						TOTAL	40.5	45.0	27.0	16.9